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Abstract

Diffusive heat transport across magnetic islands and highly stochastic layers is studied numeri-

cally for realistic values ofχ||/χ⊥ in cylindrical geometry, whereχ|| denotes the heat diffusion

coefficient parallel andχ⊥ the one perpendicular to the magnetic field lines. The computations

are performed with a second order finite difference scheme, for which the numerical errors are

independent from the value ofχ||/χ⊥ [S. Günteret. al., J. Comput. Phys.209, 354 (2005)].

Sufficient spatial resolution is ensured by using an unsheared helical coordinate system. The

heat flux around magnetic islands as well as the effective radial heat diffusivityχr are exam-

ined and compared to analytical theory. The temperature perturbations caused by magnetic

islands and the resulting bootstrap current perturbations essential for the stability of neoclassi-

cal tearing modes (NTMs) are analyzed and compared to analytical predictions [R. Fitzpatrick,

Phys. Plasmas2, 825 (1995)]. Agreement is found in the “small” and “large” island limits,
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but an enhanced NTM drive is observed in between. A correction factor that can reproduce

the numerical results very well is presented. For a highly stochastic layer, produced by five

strongly overlapping islands, the radial heat diffusivityχr is determined and compared to sev-

eral analytical theories.
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I. Introduction

Diffusive heat transport in strongly magnetized plasmas is characterized by a large anisotropy

of the heat diffusion tensor, which results from the electron mobility being much higher parallel

to the magnetic field lines than perpendicular to them. In state-of-the-art fusion experiments,

the ratio between the parallel heat diffusion coefficientχ|| and the perpendicular one,χ⊥,

reaches values up to1011 (see Ref. [1]). In this work, the heat transport across magnetic

islands and highly stochastic layers is studied for realistic values ofχ||/χ⊥ in an equilibrium

with a simplified geometry (circular cross-section, large aspect ratio).

In unperturbed equilibria with nested magnetic surfaces, the radial heat transport is exclu-

sively conducted by perpendicular transport. But in the presence of magnetic islands, nested

island magnetic surfaces exist [1]. Radial heat transport increases as it gains a parallel contribu-

tion, and the temperature profile partly flattens, reducing the overall energy confinement [1, 2].

The effect of such temperature perturbations on the neoclassical bootstrap current can lead to

further island growth (neoclassical tearing modes, NTMs) and thus to a further degradation

of energy confinement [1, 3–5]. To quantify this effect, knowledge of the exact temperature

distribution is required, which we gain from the steady state heat diffusion equation.

Stochastic fields are used at the plasma edge in some tokamak experiments to achieve a more

evenly distributed energy load on the walls and possibly to suppress edge localized modes
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(ELMs) [6, 7]. The increase of the radial heat transport in a highly stochastic layer is investi-

gated and the results are compared to analytical predictions [2, 8–12].

Physical and numerical details of our model are presented in Section II. All single island

related results can be found in Section III. Our results for the heat diffusion across highly

stochastic layers are presented in Section IV.

II. Model

A. Physical model

In this work, we limit ourselves to a plasma equilibrium with a circular cross section and a large

aspect ratio (“2πR0 periodic cylinder”). The minor radius is labeleda, the local minor radius

r, the major radiusR0, the poloidal angleθ, and the “toroidal angle”φ. In this geometry, the

steady state heat diffusion equation

∇ · ~q = P, (1)

is solved, whereP is the heat source and

~q = ~q|| + ~q⊥ = −nχ||∇||T − nχ⊥∇⊥T (2)

is the heat flux density consisting of the contributions parallel and perpendicular to the magnetic

field lines. The particle density is denotedn and assumed to be constant, the magnetic field
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direction is labeled̂b = ~B/B and the parallel and perpendicular temperature gradients are

defined as∇||T = b̂(b̂·∇T ) and∇⊥T = (∇−∇||)T . We assume the heat diffusion coefficients

χ|| andχ⊥ to be constant.

The boundary conditionsT (r = a) = 0 andlimr→0 dT/dr = 0, wherea denotes the minor

radius, are applied. The toroidal magnetic field componentBφ is taken to be constant. The

poloidal magnetic field componentBθ can be expressed in terms ofBφ and the safety factor

q = rBφ/R0Bθ, for which the analytical expressionq(r) = 0.9[1 + (r/0.48a)4]0.5 is used,

yielding toq(0) = 0.9 andq(a) = 4. To avoid energy sources within the island regions, central

heating insider = 0.2a is applied withP (r) = P0[1−3(r/0.2a)2+2(r/0.2a)3] andP (r) ≡ 0

for r ≥ 0.2a. Here, the amplitudeP0 is usually chosen such that the unperturbed temperature

at r = 0 is normalized to unity.

For the poloidal flux of magnetic perturbations,Ψpert = Ψpert,0 · r2(1− r2)2 cos(mθ−nφ)

is used, wherem andn denote the poloidal and toroidal mode numbers of the perturbation,

as it has been done in previous work [2]. This model is well-suited to study magnetic islands

although it is not very close to the solution of the tearing mode equation (see Ref. [13]) in

general. A possible shift of the plasma center due tom = 1 magnetic perturbations is not

considered.
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B. Mathematical and numerical model

For this work, a second order finite difference scheme is applied in radial and poloidal direc-

tions. The scheme developed in [14] conserves the self-adjointness of the parallel heat diffusion

operator and uses staggered grids for the heat fluxes and temperatures. By this means, numeri-

cal pollution of the perpendicular heat flux by parallel heat transport can be avoided, even if no

coordinate line is parallel to the magnetic field lines. The scheme has recently been extended

to finite element descriptions and higher order finite differences [15].

To ensure sufficient spatial resolution, the coordinate system is approximately aligned to the

magnetic perturbations by chosing a helicial coordinate system with constant rational helic-

ity qc = mc/nc. It is derived from the cylindrical coordinate system by the transformation

θ∗ = θ − φ/qc and becomes cylindrical in the limit1/qc = 0. The rationality ofqc causes

coordinate lines to close aftermc toroidal turns, which allows for a Fourier decomposition in

toroidal direction. The Fourier cutoff is performed at a specific order of the heat flux instead

of the temperature to avoid unphysical parallel temperature gradients [14]. The solution of the

system of equations is carried out with a double precision sparse matrix solver package called

WSMP [16].

For single island cases, the helicityqc of the coordinate system can be set equal to the he-

licity q = m/n of the magnetic island, which reduces the problem to two dimensions. For
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stochastic cases, a reduction of the problem to two dimensions is not possible. It will be shown

in Section III that the numerical errors are already reduced if the coordinate system is only ap-

proximately aligned to the magnetic perturbations, as this decreases the temperature gradients

along the coordinate lines. Therefore, the computational effort and the numerical errors can be

significantly reduced by takingqc similar to the helicitiesmi/ni of the magnetic perturbations.

III. Magnetic islands

As discussed by Fitzpatrick, the heat flux across magnetic islands is goverened by a competition

between parallel and perpendicular contributions and depends only on the ratio between the

island widthw (largest radial extent of the island separatrix) and the scale island widthwc =

rs(χ||/χ⊥)−1/4
√

8/εsssn [1]. Here,rs denotes the minor radius of the resonant surface,εs =

rs/R0 the local inverse aspect ratio, andss = [(r/q) · ∂q/∂r]rs the local magnetic shear at the

resonant surface. Forw = wc, the parallel and perpendicular contributions to the radial heat

transport are approximately equal.

As mentioned earlier, numerical errors can be reduced by an approximate alignment of the

coordinate helicity to the helicity of the perturbations. For a4/3 island case (rs = 0.502a,

w = 0.068a, χ||/χ⊥ = 107, w/wc = 1.9), this is demonstrated in Figure 1, which shows

the relative errors∆4/3 = |T4/3 − T4/3,ref |/T4/3,ref of the first temperature harmonicT4/3 as
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a function of the alignment measureξ = |q−1
c − q−1|, whereq = 4/3 is the helicity of the

magnetic perturbation and the helicityqc = mc/nc of the coordinate system is varied. The

errors are computed at the resonant surface for code runs with four toroidal Fourier modes.

Results for 600 radial and 160 poloidal grid points resp. 300 radial and 80 poloidal grid points

are shown. The reference run was performed in aqc = 4/3 coordinate system with 6000 radial

and 2400 poloidal grid points. It can be seen, that the numerical errors are the smaller, the

better the alignment.

A. Island heat flux density

Fig. 2 shows plots of the radial and poloidal heat flux density around a4/3 magnetic island

with an island width of0.068a for different values ofχ||/χ⊥. For smallw/wc, the heat flux is

almost unaffected by the island (Fig. 2 a). Forw/wc & 2, heat is transported around the island

within a heat conduction layer, which is located mainly inside the island separatrix (Fig. 2 b–

d). The heat conduction layer, marked in the figures with a grey background, is the region with

significant parallel transport around the island (q||,r > 0 and|r~q||| > Max|r~q⊥|/3, where the

maximum is taken over the whole plasma region). Most heat crosses the resonant surface close

to the island x-point.

Perpendicular transport from the plasma center towards the island heat conduction layer

across flux surfaces is more efficient in the o-point region than in the x-point region, as the
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distance between the flux surfaces is smaller there. The fast parallel transport consequently

redistributes heat flux within the flux surfaces from the x-point region to the o-point region.

This can be seen from Fig. 3, where~q|| is plotted only outside the heat conduction layer to

make this relatively small effect visible. As the parallel transport outside the heat conduction

layer has a radial component directed towards the plasma center (Fig. 3), the total outward

radial heat transport is reduced there. Similar arguments hold for the transport from the heat

conduction layer towards the plasma edge.

B. Effective radial heat diffusivity

The radial heat transport across magnetic islands can be measured by the poloidally and toroidally

averaged effective radial heat diffusivity coefficientχr. It is determined from the0/0 com-

ponent of the steady state heat diffusion equation∇ · ~q0/0(r) = P (r) whereqr,0/0(r) =

−nχr(r)T ′0,0(r). After the integration
∫ a
r drr . . . it is found to be

χr(r) =
a χ⊥(a) T ′0,0(a) + n−1

∫ a
r dr rP (r)

r T ′0,0(r)
. (3)

whereχr(a) ≈ χ⊥(a) has been made use of. The effective radial heat diffusivity coefficient

χr is strongly increased in the island region compared to the perpendicular heat diffusivity

coefficientχ⊥ as seen from Fig. 4, whereχ⊥/χr is plotted. Equal contributions from parallel

and perpendicular heat transport, i.e.,χr ≈ 2χ⊥, are found at the resonant surface forw/wc =

1.8. For comparison, the profiles ofχr according to an analytical theory by Yu, derived for

9



w/wc ¿ 1, are also plotted [2]. Forw/wc of about unity, the analytical theory is in very good

agreement with the numerical results. Even forw/wc = 1.8, reasonable agreement is observed

although the formula has been derived assumingw/wc ¿ 1. For still higher values ofw/wc,

no useful results can be obtained from it anymore.

As shown in Subsect. A, parallel heat diffusion slightly reduces the overall radial heat trans-

port outside the heat conduction layer. Therefore, the radial heat diffusivityχr can be expected

to be smaller thanχ⊥, there. This effect can indeed be seen from Fig. 4.

In Fig. 5, the dependence ofχr on w/wc is examined at the resonant surfaces of different

island cases, showing thatχr depends onw/wc only. Two different regimes can be identified:

κ = (χr − χ⊥)/χ⊥ ∝ [w/wc]4 for small w/wc andκ ∝ [w/wc]2 for largew/wc. They

are separated by a transition region betweenw/wc ≈ 1 and4.5. These results are in good

agreement with previous analytical and numerical work [1, 2].

C. Neoclassical tearing modes

The increased radial heat diffusivity brings about a flattening of the temperature profile in the

island region, which perturbs the bootstrap current. This, in turn, leads to a neoclassical contri-

bution to the island growth rate, which is positive for conventional tokamak plasma profiles [1].

Islands destabilized by this contribution are called neoclassical tearing modes (NTMs). The is-

land growth rate isdw/dt ∝ ∆′+∆bs, where∆′ is the classical tearing stability index and∆bs
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is the contribution from the temperature perturbations. Fitzpatrick derived analytical expres-

sions for the island drive in the limits of small and largew/wc from his analytical results for the

temperature perturbations and performed an analytical matching between these two limits [1]:

∆bs = 4.63
µ0 q3

s p′s
B2

z ε
3/2
s q′s

· 2rs w

w2 + w2
d

. (4)

Here,wd ≈ 1.8wc, the toroidal field strength is denotedBz, the unperturbed pressure gradient

at the resonant surface is denotedp′s = nT ′s, the resonant value of the safety factor is denoted

qs, and its gradientq′s.

We compute∆bs analogical to Fitzpatrick for three different3/2 and one4/3 island case,

but from the numerically obtained temperature perturbations. In Fig. 6, we plot results for

∆bs,norm = (w
√

rs q′s/T ′s q3
s) · ∆bs. For each curve,wc is varied by changing the value of

χ||/χ⊥. In the small and large island limits, the numerical results agree very well with the

analytical predictions. For intermediate ratios ofw/wc, however, Eq. (4) underestimates the

island drive significantly. We therefore suggest to change Eq. (4) by multiplying it by the factor

(
1 +

2.2
(w/wd)2 + 3wd/w

)
, (5)

which takes values in the range between1 and1.56. In Fig. 6, very good agreement between

the numerical results and the corrected formula is observed for all considered cases. As the

correction factor approaches unity forw/wd → 0 andw/wd → ∞, the corrected formula

fulfills the same analytical small and large island limits as Eq. (4). The maximum with respect
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to w (while wd is kept constant) of Eq. (4) is located atw = wd. The correction factor changes

this only slightly tow = 1.056wd. With respect towd (while w is kept constant), the corrected

formula has a maximum atwd = 0.461w (see Fig. 6), that is absent in Eq. (4).

IV. Highly stochastic layers

For the heat diffusion across highly stochastic layers, extensive analytical work has been done,

e.g. by Rechester and Rosenbluth [8], Kadomtsev and Pogutse [10], Stix [9], and Krommes

et. al. [11]. A comprehensive review was written by Liewer [12].

A. Analytical theory

Krommes et. al. identified three different subregimes of the collisional regime, where the fluid

picture used in this work is valid. They are separated by the ordering of the characteristic

electron diffusion times

τ|| = L2
0/χ|| (6)

τk = L2
k/χ|| (7)

τ⊥ = 1/(k2
⊥χ⊥) (8)

With decreasing collisionality, the regimes are called fluid regime (τ⊥ < τ|| < τk), Kadomtsev-

Pogutse regime (τ|| < τ⊥ < τk), and Rechester-Rosenbluth regime (τ|| < τk < τ⊥). The
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diffusion times correspond to the characteristic length scalesL0, Lk and1/k⊥, which are

L0 ≈ qR0, (quasi-linear autocorrelation length) (9)

Lk ≈
[
L2

s/(k2
⊥DM )

]1/3
, (Kolmogorov length) (10)

DM = L0

∑
m,n

(
Br,m/n/Bφ,0

)2
, (magnetic diffusion coefficient) (11)

Ls = Rq2/(rq′), (magnetic shear length) (12)

1/k⊥ ≈ r/m. (characteristic perpendicular wave length) (13)

Here, the radial component of them/n magnetic perturbationBr,m/n, the perpendicular wave

vector of the perturbationsk⊥ ≈ m/r, the safety factorq and its radial derivativeq′ were used.

The sum in Eq. (11) must be carried out over all locally resonantm/n magnetic perturbations.

The increaseχ+
r of the radial heat diffusivityχr = χ⊥ + χ+

r in these subregimes is

χ+
r,fl = DMχ||/L0, (fluid regime) (14)

χ+
r,KP = DM (χ⊥χ||)1/2k⊥, (Kadomtsev-Pogutse regime) (15)

χ+
r,RR = DMχ||/Lk. (Rechester-Rosenbluth regime) (16)

In the limit of smallw/wc, Yu recently derived an analytical expression which corrects the

fluid regime results by about a factor of1/2 for the case considered in the following [2].
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B. Numerical examination

We now examine the heat diffusion across a highly stochastic layer numerically and compare

our results to the analytical predictions introduced in Subsec. A. The stochastic layer is pro-

duced by five magnetic perturbations (i = 1 . . . 5) with the following helicities, island widths

and resonant surfaces:

qi =
24
23

,
25
24

,
26
25

,
27
26

,
28
27

,

wi = 0.01876a, 0.01841a, 0.01808a, 0.01777a, 0.01747a,

rs,i = 0.36767a, 0.36642a, 0.36526a, 0.36418a, 0.36317a.

A Poincaŕe plot of the resulting magnetic configuration is shown in Fig. 7. The commonly

used stochasticity parameter, defined between two magnetic perturbationsi and j assi,j =

(wi + wj)/2|rs,i − rs,j |, measures the island overlap and takes values between4 and17.5.

We define a “total stochasticity”s =
∑

i6=3 si,3 = 48.5 to characterize the stochasticity with a

single value. Our computations are carried out in aqc = 26/25 helical coordinate system.

Fig. 8 shows thatχr is increased over the whole ergodic layer. The positions of the rational

surfaces are indicated. At the edge of the layer,χr is slightly smaller thanχ⊥ for similar

reasons as for single islands (see Subsec. III.A and B). In Fig. 9, the dependence ofχr on

χ||/χ⊥ is shown at the middle resonant surfacer = rs,26/25. For small and large values of

χ||/χ⊥ a linear dependenceκ = (χr − χ⊥)/χ⊥ ∝ χ|| can be seen, while for intermediate
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values ofχ||/χ⊥ ≈ 3 · 105 . . . 109 a reduced slope is found in the log-log plot. Basically,

these are similar dependencies as predicted by the analytical expressions given in Eqs. (14–

16), which are also plotted in Fig. 9. There are, however, two major differences: First, the

ranges of validity of the regimes do not coincide. The regime boundaries found numerically

are at significantly higher ratios ofχ||/χ⊥ than the analytically predicted ones. Secondly,

the analytically predicted values are larger than the numerical results by a factor of roughly

two. For the fluid regime, this is not surprising, as the more recent analytical derivation by Yu

corrects the fluid regime just by this factor of two. Perfect agreement is found forw ¿ wc

(i.e.χ||/χ⊥ ¿ 6 · 106 for our case), when this correction is applied.

For the Rechester-Rosenbluth regime, an exponential field line diffusion has been assumed

by the original authors [8]. Rover et. al., however, performed numerical examinations and con-

cluded that the field line diffusion is substantially different from an exponential behavior [17].

This might well be the reason for the observed deviations between the numerical results and

the analytical predictions.

V. Conclusion

With the combination of a 2D finite difference scheme and a Fourier expansion in the third

direction, heat diffusion across magnetic islands and highly stochastic layers is studied numer-
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ically. An unsheared helical coordinate system is used, which allows to reduce single magnetic

island cases to two dimensional problems. Due to the fast parallel transport around the island,

the effective radial heat diffusivityχr is increased and the corresponding heat conduction layer

is located mainly inside the island. Outside the heat conduction layer, however, the parallel

transport is oriented opposite to its direction inside the layer and has a small radial contribution

directed towards the plasma center. This way,χr is slightly smaller thanχ⊥ outside the heat

conduction layer of magnetic islands. For the radial profile ofχr, it is demonstrated that the

expression recently derived by Yu for smallw/wc (see Ref. [2]) is valid forw/wc up to order

unity. The effect of temperature perturbations on the stability of NTMs is examined and agree-

ment with the analytical limits for small and largew/wc is found. The widely used analytical

matching between these two limits [1], however, has been shown to underestimate the island

growth rate for medium values ofw/wc significantly. We present a correction factor such that

the numerical results are reproduced very well.

Heat transport in highly ergodized regions is investigated for an example of five overlapping

magnetic islands. In the numerical results for the effective radial heat diffusivityχr, good

agreement with the qualitative behaviour predicted by Krommes and others is observed for the

present case [8–12]. The regions of validity of the regimes, however, do not coincide and the

absolute values differ by about a factor of two. In the limit of smallw/wc the analytical theory

has recently been corrected by Yu [2]. With this new formula, almost perfect agreement is
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found.
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Figure 1: Relative errors inT4/3 at the resonant surface for a single4/3 island case versus

the coordinate alignment measureξ = |q−1
c − q−1|. Approximate alignment of the

coordinate system to the helicity of the perturbation significantly reduces numerical

errors.

Figure 2: Plots of the heat flux density around a4/3 magnetic island withw = 0.068a. For

w/wc & 2, most heat is transported around the island in a heat conduction layer (grey

background). Vector lengths are normalized by different factorsν. (a) χ||/χ⊥ = 106,

w/wc = 1.1, ν = 1, (b) χ||/χ⊥ = 107, w/wc = 1.9, ν = 0.24, (c) χ||/χ⊥ = 108,

w/wc = 3.4, ν = 0.074, and(d) χ||/χ⊥ = 109, w/wc = 6.0, ν = 0.023.

Figure 3: Parallel heat flux density plotted only outside the heat conduction layer for the same

case as in Fig. 2 d). A radial contribution directed towards the plasma center is

observed.

Figure 4: The inverse of the radial heat diffusivityχr normalized toχ⊥ at a4/3 magnetic island

with w = 0.068a. For the first two cases, an analytical formula by Yu is plotted as

well [2]. Although we are using it outside the range it was derived for (w/wc ¿ 1),

the formula shows very good agreement with the numerical results forw/wc = 1.1

and reasonable agreement even forw/wc = 1.8.
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Figure 5: (Color online) The value ofκ = (χr − χ⊥)/χ⊥ at the resonant surface of single

islands is plotted vs.w/wc. Two regimes withκ ∝ (w/wc)4 for small values ofw/wc

andκ ∝ (w/wc)2 for large values ofw/wc are found in agreement with previous

work [1, 2]. The transition region is located betweenw/wc ≈ 1 and4.5.

Figure 6: (Color online) Island drive caused by temperature perturbations.3/2 and4/3 is-

land cases are plotted. Agreement with Fitzpatricks small and large island limits

is found [1]. However, the matching between these limits, given in Eq. (4), under-

estimates the island drive for intermediate values ofw/wc significantly. With the

correction factor we present in Eq. (5) applied, the numerical results are reproduced

very well.

Figure 7: (Color online) Poincaré plot of the magnetic field structure of the highly ergodic case

considered.

Figure 8: The inverse of the radial heat diffusivityχr normalized toχ⊥ at a highly ergodic

layer produced by five magnetic perturbations with very similar helicities.

Figure 9:κ = (χr − χ⊥)/χ⊥ at the center of the highly ergodic layer. Qualitative agreement

between the analytically predicted and the numerically observedκ is found. How-

ever, the ranges of validity of the regimes and the absolute values do not coincide.

Very good quantitative agreement is observed, when the fluid regime formula is cor-

rected according to Yu [2].
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