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We use the non-linear reduced-magnetohydrodynamic code JOREK to study edge localized

modes (ELMs) in the geometry of the ASDEX Upgrade tokamak. Toroidal mode numbers,

poloidal filament sizes, and radial propagation speeds of filaments into the scrape-off layer are in

good agreement with observations for type-I ELMs in ASDEX Upgrade. The observed

instabilities exhibit a toroidal and poloidal localization of perturbations which is compatible

with the “solitary magnetic perturbations” recently discovered in ASDEX Upgrade [R.

Wenninger et al., “Solitary magnetic perturbations at the ELM onset,” Nucl. Fusion (accepted)].

This localization can only be described in numerical simulations with high toroidal resolution.

[http://dx.doi.org/10.1063/1.4742994]

I. INTRODUCTION

Edge localized modes (ELMs) accompany the high-

confinement mode (H-mode) in tokamak fusion plasmas. As

they could cause a potentially destructive heat-load on

divertor plates and wall structures in large fusion devices,1,2

detailed understanding of these instabilities and of

mitigation-techniques is important for a successful operation

of ITER. Non-linear magnetohydrodynamic (MHD) simula-

tions with the JOREK code,3–9 which is also used for the

present article, and other codes like BOUTþþ,10

NIMROD,11 or M3D12 can make an important contribution

after successful benchmarks with measurements in existing

tokamaks.

In the present article, a comparison between simulations

with the non-linear finite-element code JOREK13 and obser-

vations in the ASDEX Upgrade tokamak14 is started. We

concentrate on the early phase of ELMs. JOREK solves the

reduced MHD equations in realistic X-point geometries as

described in Sec. II. ASDEX Upgrade is equipped with a

unique set of edge diagnostics that allows to investigate

ELM crashes with high spatial and temporal resolutions.15

This provides excellent possibilities for theory-experiment

comparisons. Emphasis is put on simulations with high toroi-

dal resolution (many toroidal modes at toroidal periodicity

1) to treat the coupling between various toroidal modes prop-

erly. This way, aspects can be identified that are described

well already at low toroidal resolution (few toroidal modes

at a high toroidal periodicity) while others are influenced sig-

nificantly by the non-linear toroidal mode-coupling.

The article is structured as follows. Section II describes

the non-linear MHD-code JOREK. Physical parameters and

technical details of the numerical simulations are given in

Sec. III. Our observations and findings made in the simulated

instabilities are presented in Sec. IV. Subsequently, Sec. V

describes how these results compare to experimental

measurements. Finally, Sec. VI summarizes and gives a brief

outlook.

II. JOREK CODE

The simulations are carried out with the single-fluid

reduced-MHD model of the JOREK code. Section II A

describes the equations solved in this model. For more

details on the derivation, refer Ref. 16 and the Appendix.

Spatial and temporal discretizations are briefly addressed in

Sec. II B.

A. Reduced-MHD equations

Seven physical variables are treated: poloidal flux W,

stream function u, toroidal current density j, toroidal vortic-

ity x, density q, temperature T, and velocity vjj along mag-

netic field lines. The normalization of the relevant quantities

is listed in Table I.

Variables j and x are connected to W and u by the defi-

nition equations

j ¼ D�W ¼ R2rpol � ðR�2rpolWÞ ¼ R
d

dR

1

R

dW
dR

� �
þ d2W

dZ2
;

(1)

x ¼ r2
pol u ¼ 1

R

d

dR
R

du

dR

� �
þ d2u

dZ2
; (2)

where rpol denotes the del-operator in the poloidal plane, R
the major radius, and Z the vertical coordinate. The time-

evolution of the remaining five free variables is described by

the following set of equations (called physics-model “302”

in JOREK):

@W
@t
¼ gj� R½u;W� � F0

@u

@/
; (3)
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@q
@t
¼ �r � ðqvÞ þ r � ðD?r? qÞ þ Sq; (4)

q
@T

@t
¼ �qv � rT � ðj� 1Þpr � v

þr � ðK?r? T þ KjjrjjTÞ þ ST ; (5)

ê/ � r � q
@v

@t
¼ �qðv � rÞv�rpþ j� Bþ �Dv

� �
; (6)

B � q
@v

@t
¼ �qðv � rÞv�rpþ j� Bþ �Dv

� �
: (7)

In every time-step, Eqs. (1)–(7) are solved simultaneously in

weak form as a large sparse implicit system of equations.

The velocity vector is defined as

v ¼ �Rru� ê/ þ vjj B; (8)

the magnetic field vector as

B ¼ ðF0 ê/ þrW� ê/Þ=R; (9)

the pressure is p ¼ qT, and j ¼ 5=3 denotes the ratio of

specific heats. Here, ê/ denotes the normalized toroidal basis

vector. The toroidal magnetic field B/ ¼ F0=R is fixed and

cannot change with time. The poloidal velocity, i.e., the

velocity vector in the poloidal plane, is denoted vpol. The par-

allel gradient is given by rjj ¼ bðb � rÞ, where b ¼ B=jBj,
and the perpendicular gradient by r? ¼ r�rjj. The Pois-

son bracket ½u;W� is defined as @u
@R

@W
@Z � @u

@Z
@W
@R. Note, that the

poloidal components of the velocity in this set of equations

are determined only by the E� B-drift term. As a result, u
acts as a velocity stream function and (except for a factor F0)

also as electric potential.

Ideal-wall boundary conditions are implemented where

the boundary of the computational domain is parallel to the

magnetic flux surfaces. At the divertor targets, where the

flux surfaces intersect the computational boundary, modified

Bohm boundary conditions apply.4,17

B. Discretization

The poloidal plane is discretized by 2D Bezier finite ele-

ments with four degrees of freedom per grid node and physi-

cal variable,13 while a Fourier decomposition is applied

toroidally. The number of toroidal modes resolved in the

simulations and the assumed toroidal periodicity of the sys-

tem can be chosen separately. A periodicity equal to one

means that the solution is computed for the whole torus. For

larger periodicities, only a toroidal section of the torus is

resolved. The modes included in the presented simulations

are listed in Table II.

The temporal discretization is performed by a fully

implicit second-order linearized Crank-Nicholson scheme.18

In the resulting large sparse system, all physical equations

and all toroidal harmonics are coupled. It is solved by an iter-

ative generalized minimal residual (GMRES) method, where

a physics-based preconditioning is applied at the beginning

of each GMRES solver step. In the preconditioning, the cou-

pling between the sub-matrices corresponding to individual

toroidal harmonics is neglected which allows to solve each

TABLE I. The normalization of quantities in JOREK is listed. It corresponds to choosing scale factors B0 ¼ 1T and R0 ¼ 1 m. Variable names with subscript

“SI” denote quantities in SI units, while variables without this subscript are the ones used in JOREK. In the presented simulations, n0 ¼ 6 � 1019 m�3 and

q0 ¼ 2 � 10�7 kgm�3. The magnetic constant is denoted l0 and the Boltzmann constant kB.

RSI ½m� ¼ R Major radius

ZSI ½m� ¼ Z Vertical coordinate

BSI ½T� ¼ B Magnetic field vector; see Eq. (9)

WSI ½T m2� ¼ W Poloidal magnetic flux

j/;SI ½A m�2� ¼ �j=ðR l0Þ Toroidal current density; j/;SI ¼ jSI � ê/

nSI ½m�3� ¼ q n0 Particle density

qSI ½kg m�3� ¼ qq0 Mass density¼ ion mass � particle density

TSI ½K� ¼ T=ðkB l0 n0Þ Temperature¼ electronþ ion temperature

pSI ½N m�2� ¼ q T=l0 Plasma pressure

vSI ½m s�1� ¼ v=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
Velocity vector; see Eq. (8)

vjj;SI ½m s�1� ¼ vjj � BSI=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
Parallel velocity component, where BSI ¼ jBSIj

uSI ½m s�1� ¼ u=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
Velocity stream function

x/;SI ½m�1s�1� ¼ x=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
Toroidal vorticity; see Eq. (2)

tSI ½s� ¼ t � ffiffiffiffiffiffiffiffiffiffi
l0q0

p
Time

cSI ½s�1� ¼ c=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
Growth rate; cSI ¼ ln½ESIðt2Þ=ESIðt1Þ�=½2DtSI�; Energy ESI½J�

gSI ½X m� ¼ g �
ffiffiffiffiffiffiffiffiffiffiffiffi
l0=q0

p
Resistivity

�SI ½kg m�1s�1� ¼ � �
ffiffiffiffiffiffiffiffiffiffiffiffi
q0=l0

p
Dynamic viscosity

DSI ½m2 s�1� ¼ D=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
Particle diffusivity (jj or ?)

KSI ½m�1s�1� ¼ K � n0=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
Heat diffusivity (jj or ?), where vSI ½m2s�1� ¼ KSI=nSI

ST;SI ½W m�3� ¼ ST=
ffiffiffiffiffiffiffiffiffiffi
l3

0q0

q
Heat source

Sq;SI ½kg s�1m�3� ¼ Sq �
ffiffiffiffiffiffiffiffiffiffiffiffi
q0=l0

p
Particle source
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sub-system separately. This is performed using the direct

solver PaStiX.19

III. SIMULATIONS

Simulations of edge-localized modes are one of the

most challenging tasks in fusion MHD numerics. The prob-

lem must be treated in realistic X-point geometry as the

mode-affected region extends from inside the H-mode pedes-

tal into the scrape-off layer, the vacuum region, and to the di-

vertor legs. High spatial resolutions in all dimensions are

required due to the small scales of the structures and the

large radial gradients of equilibrium quantities at the pedes-

tal. Thus, as a consequence of limited computational resour-

ces, not all aspects of an experiment can be described

realistically in simulations so far. For instance, simulations

with high resolution in radial and poloidal directions, i.e.,

with a large number of 2D Bezier finite-elements in the case

of JOREK, render important investigations at more realistic

plasma resistivities possible (e.g., Ref. 8), but only at a very

limited number of toroidal Fourier harmonics.

For this work, a different choice was made: The focus is

put on high toroidal resolution. This is done to investigate

the influence of toroidal mode-coupling onto the non-linear

evolution of an ELM. The mode numbers resolved in the

simulations are listed in Table II. All runs resolve the

n ¼ 0;…; 16 range but with different periodicities. The rela-

tively high number of toroidal modes involved limits the

possible radial and poloidal resolutions: Most simulations

are carried out with about 5500 Bezier elements. The corre-

sponding finite-element grid is shown in Figure 1. Only for

the simulations with lower plasma resistivity (denoted “eta6”

runs, see the next paragraph for details), the number of

Bezier elements is increased by a factor of two. Grid accu-

mulation is used to increase the resolution radially around

the separatrix and poloidally around the X-point.

Due to the comparably low poloidal resolution, only

plasma resistivities significantly larger than in the experi-

ment can be resolved. The respective simulation parameters

are listed in Table III. The limited poloidal resolution also

reduces the growth rate of modes with high mode numbers

artificially. Thus when increasing the poloidal resolution, the

most unstable mode number would shift towards larger n.

On the other hand, diamagnetic stabilization is not taken into

account in the simulations. Including this effect would have

a stabilizing effect onto high poloidal mode numbers. The

electron diamagnetic frequency for n¼ 10 is about 105 s�1

(calculated at a normalized poloidal flux of WN ¼ 0:9).

This is comparable to the fastest linear growth rates in the

simulations (see Sec. IV). Thus, the most unstable mode

numbers would probably be similar in simulations with

higher poloidal resolution and diamagnetic stabilization

taken into account.

All simulations are based on typical ASDEX Upgrade

discharge parameters—the details are given in Sec. III A.

The simulations concentrate on the early phase of an ELM-

crash up to the point where filaments start to form. The com-

putations are carried out mostly on the HPC-FF cluster

located in J€ulich, Germany. The eta5 simulations with perio-

dicity 1 and about 5500 Bezier elements require at least 102

compute nodes (8 cores and 24 GB of memory each) due to

memory requirements of the solver and take about ten

TABLE II. The toroidal mode numbers resolved in simulations with differ-

ent periodicities are listed.

Periodicity Resolved n-modes

8 0,8,16

4 0,4,8,12,16

2 0,2,4,…,12,14,16

1 0,1,2,…,14,15,16

FIG. 1. The flux-surface aligned X-point grid with 5500 Bezier finite-

elements is shown. The number of grid points are 96 poloidal points, 40 ra-

dial points inside the separatrix, 15 radial points outside the separatrix, 9

“radial” points in the private flux region, and 9 grid points along the divertor

legs. For the eta6 simulations, these numbers are all increased by a factor offfiffiffi
2
p

, leading to about 11000 Bezier elements.

082505-3 H€olzl et al. Phys. Plasmas 19, 082505 (2012)
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thousand CPU hours to complete. The eta6 computation with

11000 Bezier elements is at the limit of what can be investi-

gated with JOREK on this machine.

A. Physical parameters

A typical ASDEX Upgrade H-mode discharge with type-

I ELMs constitutes the basis of the simulations: Geometry and

profiles are taken from discharge 23221 at 4.7 s with a plasma

current of 1 MA, 8 MW of neutral beam injection heating, and

1.5 MW of electron cyclotron resonance heating. The equilib-

rium reconstruction with the CLISTE code20,21 takes into

account measured kinetic profiles. Source terms Sq and ST and

perpendicular diffusivities D? and K? are adjusted such that

the equilibrium does not change significantly with time. The

core temperature is kBTSI ¼ kBðTe;SI þ Ti;SIÞ ¼ 12:4 keV.

The safety-factor takes a value of q(0)¼ 1 in the plasma

core and qðWN ¼ 0:95Þ ¼ 4:7 close to the separatrix, where

WN ¼ ðW�WaxisÞ =ðWseparatrix �WaxisÞ denotes the normal-

ized poloidal flux. A pure deuterium plasma with a core den-

sity of 6 � 1019 m�3 is assumed. The heat diffusion anisotropy,

Kjj=K?, takes a value of 7 � 106 at the separatrix.

The spatial resolution required for the simulation is,

amongst others, determined by the resistive skin depth

dSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gSI=ðl0cSIÞ

p
which is about 6 mm in eta6 simula-

tions. As the spatial resolution possible in the poloidal plane

is limited by computational resources, realistic plasma

resistivities with a resistive skin depth of about 0.3 mm

cannot be resolved (resolving spatial scales smaller than

the ion gyro-radius is of course not reasonable anyway in

MHD-simulations).

The following data are used as inputs for the JOREK

simulation:

• From experimental measurements: Temperature and den-

sity profiles, and toroidal magnetic field strength. The

pressure profile is shown in Figure 2(a).
• From CLISTE-equilibrium reconstruction based on exper-

imental measurements: FF0-profile and the values of the

poloidal flux W at the JOREK computational boundary.

Here, F ¼ ð2p=l0Þ Jpol;SI is proportional to the poloidal

plasma current, Jpol, and F0 ¼ dF=dW. The q-profile of the

equilibrium is shown in Figure 2(b).

In JOREK simulations, the Grad-Shafranov equation is

solved first based on these input parameters. The equilib-

rium perfectly agrees with CLISTE (q-profile, flux surfaces,

etc.). After that, an “equilibrium refinement” phase is

required where the time-evolution equations are solved

only for the n¼ 0 mode, with very small time-steps that are

gradually increased. This allows plasma flows to equili-

brate.6 Successively, the reduced MHD equations are

evolved in time, taking into account some or many toroidal

Fourier modes depending on the case considered. Instabil-

ities then develop out of an initially very small random

perturbation.

IV. SIMULATION RESULTS

In the following, the simulation results are described and

analyzed. Section IV A addresses simulations with low toroi-

dal resolution, while Sec. IV B covers the situation at high to-

roidal resolution. In the succeeding Sec. IV C, an attempt

towards more realistic plasma resistivities is made. The simu-

lation results are compared to experimental findings in Sec. V.

A. Low toroidal resolution

This section provides simulation results for periodicity

8, where only the toroidal modes n¼ 0, 8, and 16 are

resolved. A ballooning-like exponentially growing mode

located close to the plasma boundary develops at the low-

field side. As seen in the energy diagnostics shown in

Figure 3, the n¼ 8 mode is linearly more unstable (growth

rate cSI ¼ 2:0� 105 s�1) than the n¼ 16 mode (cSI � 1:5
�105 s�1). Due to mode-coupling, the structure of the

n¼ 16 mode changes at t ¼ 284 ls in the simulation—the

position of its maximum amplitude moves radially from

the q¼ 4 to the adjacent q¼ 3.75 resonant surface. Hereby,

the growth rate of the n¼ 16 mode increases significantly

to cSI ¼ 4:3� 105 s�1 which is roughly the double n¼ 8

growth rate. The n¼ 8 mode also remains dominant at the

onset of non-linear mode saturation (t � 300 ls).

The ballooning-structure that develops at the whole low-

field side of the plasma is shown in Figure 4 for time point

TABLE III. Core values for plasma resistivity and viscosity are listed for

the simulations denoted eta5 and eta6. Both quantities are modelled with a

T�3=2 dependence and are chosen significantly larger than in experiments

due to computational restrictions. In ASDEX Upgrade, the core resistivity is

typically about 10�8 Xm.

Run gSI ½Xm� �SI ½m2=s�

eta5 5� 10�5 7:5� 10�5

eta6 5� 10�6 7:5� 10�6

FIG. 2. Profiles of (a) plasma pressure and (b) safety-factor are shown for

the plasma equilibrium used in the simulations.

082505-4 H€olzl et al. Phys. Plasmas 19, 082505 (2012)
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298 ls in the simulation. The “density-fingers” are very regu-

lar with a poloidal size of about 15–20 cm at the outer

midplane. The poloidal “compression” of the structures in

the vicinity of the lower (active) and the upper (inactive)

X-points compared to the outer midplane is a consequence

of field-line stagnation; the poloidal width of the structures

is roughly constant in the straight-fieldline angle h�. In

Figure 4, this can be seen by comparing the density fingers

to the white dots which divide the poloidal circumference

into equidistant sections in h�. When the exponentially grow-

ing perturbation gets visible in the density distribution, dis-

tortions start to build up which propagate into the vacuum

region as finger-like structures with significantly increased

density due to the E� B drift. Their radial velocity, meas-

ured by tracing the position at which the density equals 10

percent of the core density, increases to about 3 km=s and

saturates at that level. In the beginning, the density shows si-

nusoidal excursions of the density contours which grow over

time (linear phase). As the instability grows and non-linear

saturation sets in (energy growth rates start to decrease), the

density fingers develop sub-structures. The changing struc-

ture also reflects in a different mode-spectrum, where the

n¼ 16 energies get closer to the n¼ 8 energies (Figure 3).

The ideal-wall boundary conditions contribute to the satura-

tion of radial velocity when the distance between the mode

and the wall gets significantly smaller than its poloidal

wave-length as mirror-currents build up that slow down the

mode-evolution.

B. High toroidal resolution

Now, the same setup as in the previous Section is con-

sidered at periodicity 1: All toroidal modes in the range

n¼ 0 to 16 are resolved. The comparison of simulations with

different periodicities allows to identify effects caused by

the coupling between toroidal modes.

Time-traces of the magnetic energies contained in each

toroidal harmonic are shown in Figure 5. Linearly, the

n¼ 10 mode has the largest growth rate cSI � 2:0� 105 s�1.

In a similar way as described for the n¼ 16 mode in

Sec. IV A, the initially very small growth rate of the n¼ 1

mode (cSI � 2� 104 s�1) suddenly changes at t ¼ 150 ls

due to the non-linear interaction between the toroidal har-

monics and becomes very large: cSI � 4� 105 s�1. In the

non-linear phase of the mode, the n¼ 1 perturbation reaches

FIG. 4. The density distribution with developing ballooning-structure in the

simulation with periodicity 8 is shown at 298 ls. Regular ballooning-

structures are observed on the whole low-field side. All ballooning-fingers

are roughly equally wide in poloidal direction in the straight-fieldline angle

h� (the white dots indicate equidistant distances in h�).

FIG. 3. Time-traces of the magnetic and kinetic energies contained in the

individual toroidal harmonics are plotted for the simulation with periodicity

8. The n¼ 8 mode is linearly more unstable than the n¼ 16 mode and also

remains dominant when non-linear saturation sets in. Due to non-linear

mode-interaction, the growth rate of the n¼ 16 mode increases significantly

at t ¼ 284 ls. The n¼ 0 magnetic energy is dominated by the toroidal mag-

netic field which is fixed in time as described in Sec. IV A.

FIG. 5. Time-traces of the magnetic energies contained in the individual

toroidal modes are shown for the simulation with periodicity 1. For clarity,

kinetic energies are omitted and sub-dominant modes are only indicated by

dotted gray lines. It is remarkable that the n¼ 1 mode reaches a comparable

energy level at the onset of non-linear saturation as the n¼ 10 mode, which

is the linearly most unstable mode.
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a similar magnetic energy as the n¼ 10 perturbation which

remains dominant also at the beginning of non-linear satura-

tion (t � 300 ls). A first important effect that cannot be cov-

ered in simulations with low toroidal resolution (i.e., high

periodicity) is that low-n modes can grow to large ampli-

tudes non-linearly. The growth rate of the dominant mode

(n¼ 10 in our case) is not affected significantly by the toroi-

dal mode-coupling. Also, the radial propagation velocity of

the filaments into the vacuum region hardly changes com-

pared to the case with low toroidal resolution: The filaments

accelerate in the beginning and saturate at a velocity of about

3 km=s.

The developing density perturbation is shown in Figure 6.

Also with high toroidal resolution, a ballooning-like structure

is produced at the low-field side of the plasma. The poloidal

size of the ballooning-fingers is around 10–12 cm at the

midplane. In comparison to simulations with low toroidal

resolution, these structures are a bit smaller. A significant

difference becomes obvious when comparing Figures 4 and 6:

Due to the mode-coupling, not all fingers grow to the same

amplitude. A cluster of fingers can be seen that develops

much stronger than the rest of the ballooning-structures.

A strong localization of perturbations has also been observed

in a ballooning-instability simulated with the BOUT code.22

The localization of the perturbation becomes even more

obvious when the magnetic footprint of the mode is consid-

ered. In Figure 7, the perturbation of the poloidal magnetic

flux is plotted for simulations with different periodicities.

Clearly, the localization of the mode can only be described

correctly in simulations with periodicity 1. Figure 8 shows

the perturbation of the poloidal flux at the outboard midplane

versus the toroidal angle.

The perturbation is already localized in the linear phase

of the mode. A qualitative change between the linear and the

non-linear phases is shown in Figure 9, where the current

perturbation is plotted for two different time-frames in the

simulation with periodicity 1. In the non-linear phase where

the ballooning-fingers become visible in the density pertur-

bation, the previously alternating current filaments merge at

the position of the separatrix around the outer midplane.

Large areas with positive respectively negative currents are

created.

The strongest perturbations of all physical quantities are

localized in a flux-tube like region which extends from the

FIG. 6. The density-perturbation observed in the simulation with periodicity

1 is plotted at 294 ls. The ballooning-structures become less regular and per-

turbations are strong only within a localized region. In the cross-section

shown, this region is located on the upper low-field side.

FIG. 7. Contours of the poloidal flux perturba-

tion are shown for simulations with (a) periodic-

ity 8, (b) 4, (c) 2, and (d) 1, respectively. The red

and blue contours are plotted at the surfaces

corresponding to the perturbed poloidal flux val-

ues ~Wred=blue ¼ 60:7 � ðj ~Wminj þ ~WmaxÞ=2. Here,
~Wmin and ~Wmax denote the strongest negative and

positive perturbation values, respectively. At

lower periodicities, the perturbation steadily gets

more localized.
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vicinity of the lower active X-point along magnetic field

lines to the vicinity of the upper inactive X-point (compare

Figure 7). The perturbations are strongest around the mid-

plane. As an exception, vjj is perturbed especially around the

end-points of this flux-tube, a consequence of field-line stag-

nation close to the X-points. However, the radial perturba-

tion positions differ as shown in Figure 10. It can be seen

that the strongest perturbations of the magnetic quantities W
and j are located in the region of strong plasma current, while

the kinetic quantities are perturbed further outwards in the

region of strong pressure gradients.

C. Towards more realistic resistivities

This section briefly shows results for simulations with

the plasma viscosity and resistivity reduced by a factor of 10

(eta6 cases) compared to the simulations shown above. To

be able to resolve these more realistic parameters, the num-

ber of 2D Bezier elements in the poloidal plane was

increased by a factor of two. These simulations need to be

considered with care as the most unstable mode is n¼ 13

while we do not take into account mode numbers beyond

n¼ 16 for computational reasons.

It can be seen that a strong localization of the perturba-

tions is observed at periodicity 1 as in the eta5-cases. This is

shown for the perturbation of the poloidal flux in Figure 11.

In contrast to the eta5-simulations, the perturbation maximum

is not located around the midplane but more towards the top

and bottom regions of the low-field side. This distribution of

the flux-perturbation is not an artifact caused by cutting toroi-

dally at n¼ 16: A simulation with periodicity 2 was carried

out in which the toroidal modes n ¼ 0; 2;…; 20; 22 are

resolved, where the strongest perturbation of the poloidal flux

is not observed at the midplane but above and below it as

well.

At ASDEX Upgrade, an off-midplane mode-structure

has recently been observed in the temperature using ECE-

imaging.23 In our simulations, the perturbation maximum of

the kinetic quantities is, however, located around the mid-

plane. This is a consequence of the comparably large plasma

resistivities in our simulations which allow magnetic and ki-

netic quantities to decouple. At smaller resistivities, which

FIG. 8. The perturbation of the poloidal flux at the outboard midplane is

shown for the simulation with periodicity 1 versus the toroidal angle for two

transits around the torus. The perturbation amplitude shows a strong toroidal

variation equivalent to a localization of the perturbation to D/ � 3 rad

(FWHM). As equilibrium, boundary conditions, and sources are completely

axi-symmetric, the localization position is essentially arbitrary which proves

to be true when looking at a set of different simulations.

FIG. 9. The current perturbation at the plasma edge is shown for the simula-

tion with periodicity 1 in the (a) linear (240 ls) and (b) non-linear phases

(300 ls). In the non-linear phase, large regions with positive respectively

negative current (this cross-section) form at the separatrix (dashed line)

around the midplane.

FIG. 10. For the simulation with periodicity 1, the radial positions of the

strongest perturbations are shown at t ¼ 300 ls for the seven physical varia-

bles and are compared to profiles of the plasma current and the pressure

gradient.
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we cannot resolve at present, also the kinetic quantities

might show an off-midplane behavior.

V. COMPARISON TO EXPERIMENTS

In this section, some properties of the simulated edge

instabilities are compared to experimental observations. This

shows that important aspects of the early phase of edge local-

ized modes are well described by the reduced MHD model.

More detailed comparisons between JOREK simulations of

complete ELM crashes and experimental measurements at

ASDEX Upgrade are planned for the future (e.g., evolution

of pedestal gradients, detachment of filaments, heat-flux pat-

terns at divertor plates).

The poloidal flux perturbation from the simulation with

periodicity 1 shown in Figure 8 exhibits a toroidal localiza-

tion: Large perturbation amplitudes are localized to a region

of about D/ � 3 rad. Thus, the modes we observe in our

simulations of the early ELM phase when simulating the full

torus (periodicity 1) exhibit a similar magnetic structure as

so-called solitary magnetic perturbations recently discovered

at the ELM onset in ASDEX Upgrade and described in great

detail in Ref. 24. From the systematic analysis of a large

number of ELM crashes, a continuous distribution of the

mode solitariness was reported between cases with a very

pronounced toroidal localization (an example is shown in

Figure 12) and cases with a magnetic perturbation strength

that is toroidally virtually uniform. The toroidal localization

observed in our simulations (localized to D/ � 3rad) is less

pronounced than the extreme example of Figure 12(b) with

D/ � 1:3 rad. A direct comparison is planned for the future

making use of a virtual magnetic diagnostic which deter-

mines magnetic signals from the simulations at the same

positions as the Mirnov coils. Toroidally asymmetric struc-

tures at ELMs are also described from experimental observa-

tions in Refs. 25–28. In analytical calculations, localized

instabilities were also reported by Wilson et al.29 These

“explosive ballooning” instabilities grow much faster non-

linearly than linearly, and a poloidal narrowing of the insta-

bility in the non-linear phase is reported. Both features are

not observed in the simulated edge instabilities, which indi-

cate that different mechanisms are responsible for the local-

ization in our simulations.

The dominant toroidal mode-number turns out to be 10

in the simulations. With the plasma resistivity reduced

towards more realistic values, the dominant mode number

shifts towards 13. This is in quite good agreement to experi-

mental findings in the tokamaks ASDEX Upgrade and

MAST for type-I ELMs, where mode-numbers of 8–24 were

observed in energy deposition patterns,27 around 15 was

found from measurements with the midplane manipulator

and visible-light imaging,30 and mode numbers of 1864

have been obtained for the onset of the ELM-crash using

ECE-Imaging.23 Uncertainties in our simulations come from

the limited poloidal resolution and the neglect of diamag-

netic stabilization as discussed in Sec. III.

Low-n modes gain large amounts of energy non-linearly

in our simulations with periodicity 1. This allows them to

interact much more efficiently with core-MHD modes like

tearing modes which typically also feature low toroidal

mode numbers like 1 or 2. Indeed, there is experimental evi-

dence from the DIII-D tokamak that ELMs can be an

FIG. 11. For simulations with (a) periodic-

ity 2 respectively (b) 1 where the plasma

resistivity and viscosity is reduced by a

factor of 10 compared to the simulations

presented above, the poloidal flux pertur-

bation is shown analogously to Figure 7.

A strong localization of perturbations is

observed in these simulations as well.

FIG. 12. (a) Magnetic signals from selected Mirnov-coils are shown for a strongly localized solitary magnetic perturbation in ASDEX Upgrade as in Ref. 24.

All measurement locations are mapped to a common toroidal angle /MAP via field-line tracing. The magnetic perturbation propagates with constant toroidal

velocity in the electron diamagnetic drift direction in the lab-frame as indicated by the red dashed line. The onset time of the erosion of pedestal temperature

and density profiles is denoted tELM. (b) The time-derivative of the magnetic field measured by Mirnov coils is plotted versus the toroidal mapping angle /MAP

at t–tELM ¼ �0:03 ms. The solitary magnetic perturbation is localized to D/ � 1:2 rad.
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important triggering mechanism for neoclassical tearing

modes.31 The poloidal extent of filaments on the outer mid-

plane observed in simulations with high toroidal resolution is

around 10–12 cm. Measurements in ASDEX Upgrade and

MAST revealed filament sizes perpendicular to the field lines

of 5–10 cm.30 For ASDEX Upgrade, perpendicular and

poloidal filament sizes are equivalent due to the small field-

line pitch-angle such that simulation results and experimen-

tal observations show good agreement here as well.

In the simulations, the radial velocity of the developing

finger structures saturates at about 3 km/s after an initial

acceleration. This corresponds to a distribution of the radial

filament speed with an upper limit of 3 km/s. This velocity

depends on the stability of the initial equilibrium. The unre-

alistically large values for the plasma resistivity might lead

to an over-estimation of the filament speeds, while the ideal-

wall boundary conditions tend to reduce the radial velocity.

In experimental measurements, the radial filament speed is

found to be distributed around 1 km/s in ASDEX

Upgrade.32,33 Filament speeds faster than 2 km/s occur in

20% of the cases in both references, and almost no filaments

faster than 3 km/s are observed. Hence, radial filament

speeds in simulations and experimental measurements seem

to agree reasonably well.

In the magnetic quantities, an off-midplane mode-struc-

ture is observed in the simulations with lower plasma resis-

tivity (eta6 simulations). As the resistivity is still

unrealistically large in these simulations, magnetic and ki-

netic quantities are decoupled such that the strongest pertur-

bation of the temperature is located at the midplane. Still,

this might be related to the off-midplane structures observed

by ECE-imaging in ASDEX Upgrade.23

VI. CONCLUSIONS AND OUTLOOK

Exponentially growing ballooning-like modes have been

simulated with the reduced-MHD version of the non-linear

MHD code JOREK in the geometry and using the profiles of

a typical ASDEX Upgrade H-mode discharge. Dominant to-

roidal mode numbers, poloidal filament sizes, and radial

filament-propagation speeds of these instabilities are in good

agreement with experimental observations for type-I ELMs

in ASDEX Upgrade. At sufficient toroidal resolution, pertur-

bations show a pronounced toroidal and poloidal localization

which is compatible with solitary magnetic perturbations

recently discovered in ASDEX Upgrade. In some cases, the

perturbation of the magnetic flux is stronger at the top and

bottom low-field side than at the midplane. Presumably due

to a decoupling of magnetic and kinetic quantities caused by

the unrealistically large plasma resistivity, density, and tem-

perature perturbations are always localized on the midplane

of the low-field side. Strong perturbations in the low-n
modes are triggered non-linearly in the simulations with pe-

riodicity 1 and might explain the strong interaction of ELMs

with core-MHD modes like neoclassical tearing modes

observed in some experiments.

While this work concentrates on the early phase of an

ELM, further studies are planned to compare the simulation of

a full ELM crash to experimental observations requiring a

more sophisticated modeling of the scrape-off layer. Simula-

tions of a full ELM cycle will also be attempted. Future nu-

merical improvements and increased computational resources

will be used to advance our investigations towards more realis-

tic plasma parameters while keeping high toroidal resolutions.
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APPENDIX: A DERIVATION OF THE INDUCTION
EQUATION

The reduced MHD equations implemented in the

JOREK code can be derived following Ref. 16. For the

induction equation, this is shown in the following. The start-

ing points are the well-known expression for the electric field

in the MHD approximation

E ¼ �v� Bþ gj; (A1)

and the Maxwell-Faraday law expressed in the vector poten-

tial A

@A

@t
¼ �E� F0ru: (A2)

Inserting Eqs. (A1) into (A2) and multiplying it with the to-

roidal unity vector ê/ yields

@W
@t
¼ gjþ ðv� BÞ � ê/ � F0ru � ê/; (A3)

where the poloidal flux is identified as the major radius times

the toroidal component of the vector potential, W � R A � ê/,

and j ¼ �j � ê/ denotes the toroidal plasma current. Using

Eqs. (8) and (9), this can be written as

@W
@t
¼ gj� R½u;W� � F0

@u

@/
; (A4)

which is the induction equation (Eq. (3)) solved in the

JOREK reduced MHD model with the Poisson bracket

½u;W� ¼ @u
@R

@W
@Z � @u

@Z
@W
@R. In the last step, the reduced MHD

approximation to first order in e ¼ rjjW=r?W	 1 yielding

vpol � v? was applied.

The poloidal components of Eq. (A2), obtained by

applying the operator ê/� to this equation, yield a definition

equation for the poloidal velocity (see poloidal components

of Eq. (8)), in which u can be identified as the poloidal veloc-

ity stream function. In this set of equations, u also acts as

electric potential (except for a constant factor F0).

Galilei-invariance of the induction equation (Eq. (A2))

is not obvious at first glance. However, the proof is straight-

forward when taking into account that the scalar potential
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/ ¼ F0u is modified according to /! /� v0 � A under the

transformation v! v� v0 while the vector potential

remains unchanged (non-relativistic limit). In the large

aspect-ratio limit, it can also be shown easily that the

reduced-MHD induction equation (Eq. (A4)) is invariant to a

transformation v! v� vz with z along the cylinder axis, as

the scalar potential transforms according to /! /� vzW.
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