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Nonlinear simulations of the early edge-localized mode (ELM) phase based on a typical type-I

ELMy ASDEX Upgrade discharge have been carried out using the reduced MHD code JOREK.

The analysis is focused on the evolution of the toroidal Fourier spectrum. It is found that during the

nonlinear evolution, linearly subdominant low-n Fourier components, in particular the n¼ 1, grow

to energies comparable with linearly dominant harmonics. A simple model is developed, based on

the idea that energy is transferred among the toroidal harmonics via second order nonlinear

interaction. The simple model reproduces and explains very well the early nonlinear evolution of

the toroidal spectrum in the JOREK simulations. Furthermore, it is shown for the n¼ 1 harmonic,

that its spatial structure changes significantly during the transition from linear to nonlinearly driven

growth. The rigidly growing structure of the linearly barely unstable n¼ 1 reaches far into the

plasma core. In contrast, the nonlinearly driven n ¼ 1 has a rigidly growing structure localized at

the plasma edge, where the dominant toroidal harmonics driving the n¼ 1 are maximal and in

phase. The presented quadratic coupling model might explain the recent experimental observation

of strong low-n components in magnetic measurements [Wenninger et al., “Non-linear magnetic

perturbations during edge localized modes in TCV dominated by low n mode components,” Nucl.

Fusion (submitted)]. [http://dx.doi.org/10.1063/1.4817953]

I. INTRODUCTION

Edge-localized modes (ELMs) are relaxation-oscillation

instabilities observed at the edge of tokamak plasmas in

high-confinement regime (H-mode). Ejecting energy and

particles from the plasma, ELMs have the favorable effect of

reducing the impurity content of the plasma and providing a

mean to control the plasma density.1 But if too large, they

cause large heat fluxes which can damage plasma facing

components.2,3 As the ability of controlling the ELM proper-

ties decides on whether the H-mode can be a suitable opera-

tional regime for ITER and future fusion reactors, the

understanding of this instability is crucial. Nonlinear MHD

simulations are an important tool in the quest for theoretical

comprehension of ELMs.

A nonlinear reduced MHD code, which has been devel-

oped especially for edge instabilities, is the JOREK code.4 In

this work, it is used for simulations of the early ELM phase,

which are based on the geometry and parameters of an

ASDEX Upgrade tokamak5 discharge. Section II introduces

JOREK and gives details about the simulations. The toroidal

Fourier spectrum of the instability and its nonlinear evolu-

tion is analyzed and compared to recent experimental find-

ings in Sec. III. It is observed that initially weakly unstable

toroidal Fourier components can become important nonli-

nearly. In Sec. IV, the question is addressed, what deter-

mines the nonlinear evolution of the toroidal harmonics in

the simulations. A simple model is presented that shows how

this evolution can be understood in the framework of second

order nonlinear coupling between the toroidal harmonics.

Finally, in Sec. V, it is investigated how the radial and poloi-

dal localization of a linearly subdominant toroidal harmonic

changes due to its nonlinearly driven growth. A summary

and an outlook are given in Sec. VI.

II. THE JOREK CODE AND THE SIMULATIONS

A. JOREK

The finite element code JOREK solves the nonlinear

reduced MHD equations in full toroidal X-point geometry

including separatrix and open flux surfaces. JOREK has origi-

nally been developed by Huysmans.6,7 For the presented sim-

ulations, a single fluid version of JOREK (“model302”, code

revision R706) has been used. The code is discretized via a

Fourier decomposition in toroidal direction and 2D bi-cubic

B�ezier finite elements in the poloidal plane. The grid in the

poloidal plane is aligned to the flux surfaces and can be

refined in the regions of interest. The toroidal Fourier decom-

position allows to choose the toroidal harmonics included in

the computation. The discretization in time is performed

according to a fully implicit Crank-Nicholson scheme. For

the part of the boundary which follows the outermost open

flux surface, ideally conducting wall boundary conditions are

implemented, and for the divertor where the boundary is

crossed by magnetic field lines, modified Bohm boundary

conditions apply. The code uses a particular normalization of

the physical variables. A JOREK time unit corresponds to

approximately 0:5 ls at the parameters of the presented simu-

lations. In the following, quantities indexed with “JOREK”

are normalized according to the JOREK normalization

scheme (units of these quantities are omitted). For the equa-

tions solved by the applied JOREK model and details about

the normalization of the variables, refer to Ref. 8.
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B. The simulations

The simulations are focused on the early ELM phase

when the instability grows exponentially before the onset of

nonlinear saturation. Emphasis has been put on the analysis

of the nonlinear interaction of the toroidal Fourier harmon-

ics, thus a large number of included toroidal harmonics and a

high flexibility in combining them was required. The simula-

tions are based on the simulations presented in Ref. 8 (equi-

librium and parameters are the same as in the “eta5”

simulation in Ref. 8) with an additional modification of the

code providing the possibility of excluding desired harmon-

ics from the simulation. The baseline simulation includes 16

toroidal Fourier harmonics n ¼ 1; 2; :::; 16 in addition to the

axisymmetric n¼ 0 part. To analyze the interaction of the

different harmonics in more detail, a large number of simula-

tions including different subsets of these harmonics have

been carried out.

The simulations are based on an equilibrium recon-

struction of a typical type-I ELMy H-mode ASDEX

Upgrade discharge (#23221 at 4.7 s). The equilibrium

reconstruction has been performed with the CLISTE

code.9,10 The corresponding equilibrium pressure and safety

factor profiles are shown in Figure 1. The particle density in

the plasma center is 6� 1019 m�3. Heat and particle sour-

ces and perpendicular heat and particle diffusivities are cho-

sen such that the background profiles do not change

significantly during the simulation. The parallel particle dif-

fusivity is set to zero, parallel particle transport is thus pro-

vided by convection only. The heat diffusion anisotropy at

the separatrix is about jk=j? ¼ 7� 106. Viscosity and re-

sistivity have a T
�3=2
N temperature dependency, where TN is

the temperature normalized by its value at the plasma cen-

ter. The core viscosity is set to about 1:2� 10�5 kg m�1 s�1.

The resistivity (g � 5� 10�5 Xm in the core, leading to

a Lundquist number of about 105) is larger than in a re-

alistic ASDEX Upgrade discharge (where the core resis-

tivity has values of about 10�8 Xm) due to computational

restrictions.

III. NONLINEAR EVOLUTION OF THE TOROIDAL
HARMONICS

The time evolution of the toroidal Fourier harmonics of

the perturbation in the early phase of an ELM can be subdi-

vided into three phases, a linear phase, an early nonlinear

phase, and the nonlinear saturation. Time traces of total ener-

gies and growth rates of the different toroidal harmonics in a

simulation with 16 included harmonics (n ¼ 1; 2; :::; 16) are

shown in Figures 2 and 3.

At the beginning of the exponential growth of the insta-

bility, the toroidal harmonics grow at a constant rate. The

growth rate of a toroidal Fourier component in this linear

phase of the evolution is the same as in a simulation where

this component is the only included one. It is observed that

in the linear phase of this simulation, the Fourier components

with mode numbers n¼ 9 and n¼ 10 grow the fastest. In our

FIG. 1. Equilibrium pressure (red) and safety factor (blue) obtained from an

equilibrium reconstruction of an ASDEX Upgrade discharge. The values of

the safety factor in the center and at the edge are q(0) � 1 and q(0.95) � 4.7.

FIG. 2. Time evolution of the energies contained in the different toroidal

Fourier harmonics in the early ELM phase of a simulation with included

mode numbers n ¼ 1; 2; :::; 16. The linearly dominant harmonics are n¼ 9

and n¼ 10. Energy is transferred from the dominant to the linearly subdomi-

nant harmonics, like n¼ 1 or n¼ 2, by nonlinear interaction.

FIG. 3. Growth rates of the toroidal Fourier harmonics in a simulation with

n ¼ 1; 2; :::; 16. In the linear phase at the beginning of the exponential

growth of the perturbation, the harmonics grow at constant growth rates and

independently of each other. Subsequently, the growth rates of the linearly

subdominant harmonics increase due to nonlinear interaction between the

different toroidal harmonics. At the end of this early nonlinear phase, the

growth begins to saturate.
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simulations, diamagnetic drift effects are neglected which

would act stabilizing on high-n harmonics. However, the

poloidal resolution limited by computational restrictions also

reduces the growth rates of harmonics with high mode num-

bers. Linearly dominant mode numbers in the intermediate

range, as we observe them here, are thus in line with linear

theory again.

In contrast to the linear phase where the toroidal Fourier

harmonics grow independently of each other, the harmonics

start to interact in the subsequent early nonlinear phase. Due

to nonlinear interactions, energy is transferred among the to-

roidal Fourier components, which influences their growth

rates. Following this phase, the nonlinear saturation yields a

decrease of the growth rates. The main saturation effect is

that the background current density and pressure gradient at

the edge are reduced by the perturbation, which weakens the

drive of the instability. Additionally, the stabilizing influence

of the ideal wall boundary conditions becomes more impor-

tant if the displacement of the plasma due to the perturbation

becomes significant compared to the distance between sepa-

ratrix and ideal wall.

In the following, emphasis is put on the dynamics of the

early nonlinear phase before the onset of saturation. It is

observed that during this phase, growth rates of toroidal

Fourier components which are linearly subdominant increase

and that in particular the n¼ 1 toroidal harmonic even

reaches energies comparable to those of the linearly domi-

nant components, which has already been pointed out in

Ref. 8. This relates to very recent experimental observations.

During type-I ELMy discharges in TCV (Tokamak �a config-

uration variable), the toroidal mode structure of the magnetic

perturbations has been found to be often dominated by low

mode numbers, in particular by the n¼ 1 component.11 The

magnetic diagnostics in ASDEX Upgrade are not suitable for

the detection of low-n harmonics12 such that it is unclear at

present if this phenomenon is also found here.

IV. SIMPLE QUADRATIC COUPLING MODEL

The detailed dynamics of the early nonlinear phase, i.e.,

why the growth rates of the initially subdominant toroidal

harmonics increase, at which point in time the rise occurs

and how large the growth rates become, can be explained in

the framework of “three wave interaction.” Considering a

superposition of two toroidal harmonics with mode numbers

i and j, a second order nonlinear term generates harmonics

with mode numbers ji 6 jj. Hence, energy can be transferred

to other harmonics by quadratic coupling. Based on this

idea, a simple model describing the time evolution of the

amplitudes Ai of the ith toroidal harmonics (Ai is defined asffiffiffiffiffi
Ei

p
, where Ei is the total energy contained in the ith toroidal

harmonic) can be set up by

@Ai

@t
¼ ciAiþ

X16

j¼1

X16

k¼1

ci
jkAjAkdði 6 j 6 kÞ for i¼ 1;2;…;16;

(1)

where ci are the constant linear growth rates and ci
jk are the

coupling constants. As the latter describe the spatial overlap

of harmonics j and k in the poloidal plane, they can be set

constant assuming that the toroidal harmonics grow rigidly

without changing their spatial structure. This is indeed the

case for all linearly dominant harmonics. The set of coupled

nonlinear differential equations (1) is able to reproduce to a

large extent the time evolution of the toroidal Fourier spec-

trum of the perturbation in the early nonlinear phase of the

JOREK simulations. To achieve this, the appropriate linear

growth rates and coupling constants have to be chosen.

The linear growth rates ci can be extracted directly from

the linear phase of the JOREK simulations. From simulations

with only few included toroidal harmonics, e.g., two linearly

dominant ones which nonlinearly drive a third harmonic, the

relevant coupling constants can be isolated. Six coupling con-

stants remain, namely, c1
9;10, c2

8;10, c3
7;10, c4

6;10, c15
7;8, and c16

7;9.

Whereas the linear terms of the system of equations (1)

cause an influx of energy into the system (from the axisym-

metric n¼ 0 part), the nonlinear terms only yield an

exchange of energy among the toroidal harmonics and

should thus conserve the total energy. If this conservation of

energy is taken into account, for each non-zero ci
jk also cj

ik

and ck
ij have to be included into the model and

@Etot

@t
¼ @

@t

X

i

A2
i ¼

!
0 (2)

has to be fulfilled at any time by the system of equations (1)

omitting the linear terms. Equation (2) results in additional

constraints for the coupling constants such that, taking into

account energy conservation, twelve free coupling constants

remain. As will be seen later, the additional terms necessary

to ensure energy conservation only play a role at the very

end of the early nonlinear phase.

The free coupling constants can be obtained by fit-

ting the time evolution of the energies contained in the

toroidal harmonics described by Eq. (1) to those result-

ing from a JOREK simulation. Initial values for the cou-

pling constants are taken from the simulations with only

two or three included toroidal harmonics. In every step

of the fitting procedure, the system of nonlinear coupled

differential equations is solved and the quadratic differ-

ences of the logarithmic energies for every harmonic and

for a large set of points in time are summed and

minimized.

Figure 4 compares the energy time traces of the JOREK

simulations to the simple model with six free parameters. It

can be seen that the results of the simulation in the early non-

linear phase are very well reproduced by the simple quad-

ratic interaction model. The values for the six coupling

constants obtained from the fit (which are c1
9;10 ¼ 113,

c2
8;10 ¼ 76, c3

7;10 ¼ 65, c4
6;10 ¼ 21, c15

7;8 ¼ 32, and c16
7;9 ¼ 34

(units omitted)) are close to the initial values verifying that

the relevant coupling constants were taken into account.

From the excellent agreement using only few free parame-

ters, it can be concluded that the early nonlinear evolution of

the toroidal Fourier spectrum is indeed determined by quad-

ratic coupling. Furthermore, it can be seen that the nonlinear

growth of a driven harmonic is mainly dominated by one sin-

gle nonlinear coupling term only.13 As a linearly growing
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harmonic evolves as AjðtÞ ¼ Aj;0 expðcjtÞ, it follows thus

from Eq. (1) for the growth rate of the nonlinearly driven

harmonic that ci;nonlinear ¼ d logAi=dt ¼ cj þ ck, i.e., the non-

linear growth rate of the driven harmonic equals the sum of

the growth rates of the two driving harmonics.

The time evolution of the energy spectrum from JOREK

(solid lines) and from the simple interaction model (x) is

shown in Figure 5. It is visible that at the end of the early

nonlinear phase where the saturation sets in, the results from

the simple model start to deviate from the JOREK results.

This corresponds to the expectations, as the mechanisms re-

sponsible for the saturation are not described by the model.

As the linear growth rates are assumed to be constant in the

model, a reduction of the drive of the instability due to

the effects described above cannot be reflected. Moreover,

the assumption of rigidly growing harmonics leading to con-

stant coupling constants breaks down when saturation sets

in. Figure 5 also shows the results from the simple interac-

tion model accounting for energy conservation (þ). It can be

seen that the additional terms only play a role at the end of

the early nonlinear phase.

The simple interaction model has also been tested on

two JOREK simulations with only four included toroidal har-

monics (n ¼ 4; 8; 12; 16) and different distances between

plasma and ideal wall which effectively changes the linear

growth rates, but preserves the spatial structure of the toroi-

dal harmonics. The results of both JOREK simulations are

reproduced well with the simple model by only adapting the

linear growth rates but keeping the same coupling constants.

The very good agreement indicates that the simple

model provides a good explanation of the non-linear drive of

low-n harmonics in the JOREK simulations and could well

explain the observations of strong low-n harmonics in the

experiment.11

V. EVOLUTION OF THE n 5 1 SPATIAL STRUCTURE

In the previous section, it has been shown how energy is

transferred to linearly subdominant toroidal Fourier harmon-

ics via nonlinear coupling of the dominant harmonics. It has

been shown that the n¼ 1 toroidal component can even

become one of the dominant harmonics, driven by the inter-

action between the linearly most unstable toroidal harmonics

(n¼ 9 and n¼ 10 in this case). In this section, the question is

addressed, how the spatial structure of the n¼ 1 harmonic in

the poloidal plane is affected by this energy transfer.

Figure 6(a) shows the absolute value of the n¼ 1 com-

ponent of the poloidal magnetic field perturbation in the lin-

ear phase of a JOREK simulation with n ¼ 1; 2;…; 16. In

the linear phase, the n¼ 1 component extends over a large

part of the whole plasma volume. In simulations where the

n¼ 1 harmonic is the only included toroidal harmonic, the

perturbation grows rigidly preserving this structure.14

In contrast to the simulations with only one included to-

roidal harmonic, in the simulations with n ¼ 1; 2;…; 16 the

structure of the n¼ 1 does not continue to grow rigidly.

When the growth rate of the n¼ 1 starts to increase due to

nonlinear coupling, its structure changes significantly. After

a phase of transition, a new rigidly growing structure is

observed. The rigid growth sets in when the growth rate of

the n¼ 1 is fully determined by the energy transfer from

dominant harmonics. This new n¼ 1 structure in the early

nonlinear phase is shown in Figure 6(b). It is now peaked at

the edge of the plasma, in the radial region where also the

FIG. 4. Time evolution of the energies contained in the toroidal Fourier har-

monics of a JOREK simulation with included mode numbers n ¼ 1; 2; :::; 16

(straight lines) compared to the results of the simple model with six free pa-

rameters (dashed lines). The model is based on the idea that energy is trans-

ferred among the toroidal harmonics due to second order nonlinear

interaction between them. In the early nonlinear phase, the results from the

simple model agree very well with the JOREK results. The deviations

between JOREK simulation and model at the end of the early nonlinear

phase correspond to the expectations as in this phase the growth is already

influenced by saturation effects which are not described by the simple

model.

FIG. 5. Energy spectrum of the toroidal Fourier harmonics in a JOREK sim-

ulation with n ¼ 1; 2; :::; 16 (straight lines) compared to the results of the

simple quadratic coupling model (crosses) for different points in time. It can

be seen how the low-n part of the spectrum increases significantly and the

energies become comparable to those of the linearly dominant harmonics.

The plot shows the results of two different versions of the model, one has

six free coupling constants (x) and the other one has twelve free coupling

constants in order to account for energy conservation (þ). The results of the

simple model do not deviate from the more accurate one except at the end of

the early nonlinear phase.
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n¼ 9 and n¼ 10 are localized. The poloidal localization of

the n¼ 1 on the low-field side coincides approximately with

the region where the n¼ 9 and n¼ 10 are in phase (the poloi-

dal angle where this is the case of course depends on the cho-

sen toroidal position). The rigidity of the new n¼ 1 structure

is illustrated in Figure 7, where contours of the absolute

value of the n¼ 1 poloidal magnetic field perturbation are

drawn for two different points in time during the early non-

linear phase.

The observed evolution of the n¼ 1 spatial structure can

be interpreted as a superposition of two rigidly growing

structures. The first one, visible in the linear phase of the

simulation, is the linearly unstable n¼ 1 growing at a very

small growth rate. The second structure, which emerges in

the early nonlinear phase, corresponds to a different, linearly

stable but nonlinearly driven n¼ 1 which quickly covers the

linear structure due to the much stronger growth rate. The

phase of transition can indeed be approximately reproduced

by superposing the two rigid structures starting at different

initial amplitudes and growing at different growth rates.

VI. CONCLUSIONS AND OUTLOOK

Nonlinear reduced MHD simulations of the early ELM

phase based on ASDEX Upgrade parameters have been pre-

sented. In order to analyze the evolution of the toroidal

Fourier harmonics, emphasis has been put on simulations

including a large set of toroidal harmonics and simulations

including different combinations of these harmonics. It has

been observed that linearly weakly unstable toroidal harmon-

ics can achieve large growth rates due to nonlinear coupling

FIG. 6. Poloidal cross section of the absolute value of the n¼ 1 poloidal magnetic field perturbation in the linear phase (a) and in the early nonlinear phase (b)

of a simulation with included mode numbers n ¼ 1; 2; :::; 16. The dotted white lines show the separatrix and flux surfaces at WN ¼ 0:33 and WN ¼ 0:66 where

WN ¼ ðW�WaxisÞ=ðWseparatrix �WaxisÞ is the normalized equilibrium poloidal magnetic flux. Contours at 50% of the maximal value of the absolute value of

the poloidal magnetic field perturbation are plotted in mauve for the n¼ 9 component and in dark red for the n¼ 10 component for comparison. In the linear

phase, the n¼ 1 toroidal harmonic extends far into the plasma core. In contrast, in the early nonlinear phase, it is radially localized at the plasma edge where

also the n¼ 9 and n¼ 10 are maximal. The poloidal position of the n¼ 1 on the low-field side in this phase corresponds to the poloidal region where the n¼ 9

and n¼ 10 are in phase.

FIG. 7. Contours at different fractions of the maximal absolute value of the

n¼ 1 component of the poloidal magnetic field perturbation. The structures

at the beginning of the early nonlinear phase (straight lines) and shortly

before nonlinear saturation sets in (dotted lines) agree very well, which

shows that the structure of the n¼ 1 toroidal harmonic shown in Figure 6(b)

grows rigidly until the onset of saturation. The grey lines show the separatrix

and flux surfaces at WN ¼ 0:33 and WN ¼ 0:66.
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of dominant harmonics. In particular, the energy of the n¼ 1

harmonic becomes comparable to energies of linearly domi-

nant harmonics in the course of the nonlinear phase, which

corresponds to recent experimental observations in TCV.11

To explain what determines this nonlinear behavior of the to-

roidal Fourier spectrum, a simple quadratic interaction model

has been set up, based on the idea that second order nonlin-

ear coupling between toroidal harmonics can generate har-

monics with “sum and difference mode numbers.” This

model is able to reproduce to a large extent the time evolu-

tion of the toroidal energy spectrum in the early nonlinear

phase of JOREK simulations before saturation sets in. In par-

ticular, the model reproduces the growth rates of the linearly

driven toroidal harmonics in the early nonlinear phase. This

shows that the nonlinear evolution of the toroidal Fourier

spectrum in this phase is predominantly determined by quad-

ratic coupling. The growth of the n¼ 1 harmonic is driven

by interaction between the two linearly most unstable toroi-

dal harmonics.

Furthermore, it has been investigated how the spatial

structure of the n¼ 1 in the poloidal plane is modified by the

energy transfer to the n¼ 1 in the nonlinear phase. It has

been observed that the rigidly growing structure of the line-

arly unstable n¼ 1 which reaches far into the plasma core

transitions into another rigidly growing structure of a linearly

stable but nonlinearly driven n¼ 1. This second structure is

localized at the edge of the plasma, in the region where also

the two linearly dominant harmonics are maximal, which is

in line with the idea that the n¼ 1 emerging in the nonlinear

phase is generated by the interaction between these harmon-

ics. The assumption brought up in Ref. 11 that a strong n¼ 1

component gives access to the plasma core, which could

explain the large losses of energy observed during type-I

ELMs, is thus not supported by the simulations, as nonli-

nearly, the n¼ 1 becomes highly localized at the edge.

Nevertheless, strong low-n components could couple easier

to core instabilities having a similar toroidal structure, such

as neoclassical tearing modes.

As a next step, it would be interesting to render simula-

tions with more realistic values for viscosity and resistivity

possible. As diamagnetic stabilization and sheared toroidal

plasma rotation are expected to have some influence on the

nonlinear coupling between the toroidal harmonics, includ-

ing these effects in the simulations is also planned.

Moreover, simulations exceeding the early ELM phase are

subject of ongoing work.
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