
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 130.183.102.28

This content was downloaded on 16/05/2017 at 11:40

Please note that terms and conditions apply.

Recent progress in the quantitative validation of JOREK simulations of ELMs in JET

View the table of contents for this issue, or go to the journal homepage for more

2017 Nucl. Fusion 57 076006

(http://iopscience.iop.org/0029-5515/57/7/076006)

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0029-5515/57/7
http://iopscience.iop.org/0029-5515
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1 © 2017 Culham Centre for Fusion Energy Printed in the UK

1. Introduction and motivation

Elaborate experimental scaling laws for the ITER tungsten 
divertor provide an estimate of the ELM (Edge–Localised–
Mode) and inter-ELM target heat fluxes [1, 2]. These pre-
dictions can be reinforced by numerical simulations of 
large-scale instabilities, like peeling–ballooning (PB) modes, 
to describe the characteristic dynamics of ELMs, as well as 
small-scale turbulence of kinetic-ballooning modes (KBMs) 

and ion-temperature-gradient (ITG) instabilities to describe 
the cross-field transport in the pedestal which regulates the 
plasma and energy exhaust across the separatrix in inter-ELM 
regimes.

Several nonlinear MHD codes, such as JOREK, BOUT++, 
HESEL and EMEDGE3D in Europe [3–8], M3D-C1 and 
NIMROD in the US [9, 10], or MEGA in Japan [11–13], 
can obtain advanced ELM simulations, with challenging 
physics effects like bi-fluid diamagnetic rotation and current, 
low resistivity and viscosity levels, as well as high poloidal/
toroidal resolutions. In the last decade, nonlinear MHD codes 
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have focused their efforts on obtaining qualitative agreement 
with experimental observations, by considering key ELM 
characteristics like the formation of hot plasma filaments 
that are ejected through the separatrix, the collapse of the 
pedestal pressure, and the transport of energy to the divertor 
and first wall components. Recent increases in computational 
resources available to fusion research are now enabling the 
start of quanti tative comparisons with experiments, which is 
the compulsory path towards predictions for future devices 
like ITER. In sight of the urgent need for such predictions, this 
paper discusses the latest progress of quantitative validations 
for the nonlinear MHD code JOREK against experimental 
data from the JET-ILW device.

In particular, one of the main issues for all nonlinear MHD 
codes that address ELM physics is the methodology used for 
the simulation set-up, and more precisely the initial boundary 
conditions. Unless multiple ELM cycles are simulated, the 
initial condition is typically chosen to be an unstable axisym-
metric equilibrium with small toroidal perturbations (of the 
order of numerical noise). This paper will show that, if these 
initial conditions are used, nonlinear coupling cannot be 
obtained in the critical phase of the ELM crash; it will only 
occur in the late phase of the ELM, at which point it is too late 
to make a significant difference in ELM dynamics.

The paper is organised as follows. In section  2, we pro-
vide details on the JOREK code, including the physics model 
used for the simulations, and how JET experimental data 
is used to create initial conditions for the simulations. In  
section 3, we describe the results on the quantitative valida-
tion of JOREK simulations for ELMs in JET, and how these 
are affected by diamagnetic terms. Section 3 will also discuss 
the nonlinear aspect of simulations and the role played by ini-
tial value conditions concerning coupling between toroidal 
modes. In the conclusion, section 4, we discuss how predic-
tions for future devices with the JOREK code need to rely on 
multi-cylce ELM simulations, and what this implies for future 
simulations.

2. The JOREK code

2.1. The physics and numerical models

The 3D nonlinear MHD code JOREK was developed by 
Huysmans et  al with the specific aim to produce simula-
tions of edge-localised-modes [3, 4]. The MHD model used 
for the present paper is similar to that used in previous ELM 
studies [14–18]. It is a five-field reduced MHD model for the 
variables ψ (poloidal magnetic flux), Φ (electric potential),  
v∥
→  (parallel velocity), ρ (density), T (total temperature), 
including the two-fluid diamagnetic effects. The reduction of 
the equations assumes that the perpendicular velocity lies in 
the poloidal plane, and that the toroidal magnetic field is con-
stant in time, so that the total plasma velocity and the total 
magnetic field are expressed respectively as
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where R is the major radius, →
φe  is the toroidal unit vector and 

=F B Ro o o, with Bo being the magnetic field amplitude at 
the reference major radius R  =  Ro. The diamagnetic comp-
onent of the perpendicular velocity is represented by the third 
term v→ →δ ρ= ×∇φ∗
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1 , where pi is the ion pressure and 
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1, with the ion gyrofrequency /Ω = eB mci o i. 

Substituting the identities (1) and (2) into the visco-resistive 
MHD equations gives the reduced MHD model, first derived 
by Strauss [19], with two equations  for the parallel and the 
perpendicular momentum,
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where the density, temperature and current sources ρS , ST 
and jA have been introduced. The current source term jA also 
includes the time-dependent bootstrap current calculated 
using Sauter’s formula [20]. The convective derivative, the 
parallel gradient, the perpendicular gradient, and the Poisson 
brackets are defined as

v→=
∂
∂
+ ⋅ ∇

t t

d

d
,E (8)

[ ]∥
→ →

∇ = ⋅ ∇b b , (9)

∥∇ = ∇−∇⊥ , (10)

[ ] ( )→α β α β= ⋅ ∇ ×∇φe, , (11)

→ →
=b

B
B

1
. (12)

Note that equations  (3) and (4) can be reduced to scalar 
equations by projecting them in the poloidal and parallel direc-
tions, respectively, by applying the operators [ ()]→∇ ⋅ ×φRe  
and ()

→
⋅b . This reduced set of equations (without the diffusive 

transport terms and the diamagnetic terms) is equivalent to 
that derived in [21], where energy of the system is shown to 
be conserved at first order.
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The perpendicular mass and thermal diffusivities ⊥D  and 
κ⊥ used in simulations are ad hoc coefficients with a well at 
the pedestal region to represent the H-mode transport barrier. 
The profiles used for ⊥D  and κ⊥ are discussed in section 2.2. 
A Spitzer-like resistivity ( / ) /η η= −T To oe e,

3 2 is used, with 
T oe,  the electron temperature at the magnetic axis. Likewise, 
a temperature-dependent perpendicular viscosity is used: 

( / ) /µ µ= −T To oe e,
3 2. The Braginskii parallel thermal conduc-

tivity ∥κ  is expressed as ( / )∥ ∥
/κ κ= T To o

5 2. The ratio of spe-
cific heat is /γ = 5 3. Hyper-diffusive coefficients µhyp, ηhyp 
and Dhyp are also used in these simulations.

The normalization of the equations is based on the magn-
etic permeability µo and the core density ρo, so that time is nor-
malized to a near Alfven time / µ ρ=t t o oSI . For a deuterium 
plasma with particle density m= × −n 6 10o

19 3, a normalized 
time unit corresponds to approximately 0.5μ s. Naturally, 
current is normalized with µo and density with ρo. Pressure 
is also normalized with µo, the diamagnetic frequency is nor-
malised with time, as and δ δ µ ρ=∗ ∗

o oSI  and the diffusive 
parameters are normalized as /η η ρ µ= o oSI , /µ µ µ ρ= o oSI , 

µ ρ=D D o oSI  and /κ κ µ ρ= o oSI .
The boundary of the computational domain in the SOL is 

a flux surface, on which Dirichlet boundary conditions (zero 
perturbation) are applied for all variables, except density and 
temperatures, for which Neumann conditions with null gra-
dient are applied. At the divertor targets, sheath boundary 
conditions are used for the parallel velocity and the energy 
conduction, such that,

γ⋅ =± =±b c T ,stotv→
→

 (13)

v v∥ ∥ ∥ ∥
→ →κ γ+ ∇ =nT T nT .sh (14)

where 
→
b is the unit vector parallel to the magnetic field. The 

density has free outflow boundary conditions at the target  
(no density reflection). In the private region, which is also 
bounded by a flux surface, Dirichlet conditions are used for 
all variables.

The 2D poloidal grid is composed with isoparametric cubic 
Bezier finite elements [4]. The finite element grid is aligned 
to equilibrium flux surfaces for the three regions of the core, 
the SOL and the private region. Alignment along open flux 
surfaces in the SOL is important in order to treat accurately 
the fast parallel transport of energy along magnetic field lines. 
The toroidal dimension is represented by a Fourier series.

The time stepping is done using the implicit Crank–
Nicolson scheme, so that the size of time steps depends 
only on the time scale of the instabilities that are simulated. 
This implicit scheme results in a sparse system of equations, 
which is solved using a Generalized Minimal REsidual Solver 
(GMRES). The preconditioner for this iterative GMRES is 
obtained by solving independently each sub-matrix corre-
sponding to different Fourier harmonics, which amounts to 
a block-Jacobi preconditioner. These sub-matrices are solved 
using the direct parallel sparse matrix solver PaStiX [22].

In order to allow the n  =  0 component of the 
→ →
×E B and 

parallel flows to evolve towards a stationary equilibrium, the 

simulations are first run without toroidal modes, with only the 
equilibrium n  =  0, for 0.5 ms. This allows the Bohm boundary 
conditions to diffuse into the SOL (at the zeroth time step, v∥

→  
is Mach-1 on the target, and zero inside the plasma, already at 
the nodes adjacent to the boundary)

2.2. Simulating ELMs in JET

The pulses used for the simulations are the same JET-ILW 
as in [14]: an IP and a ν* scan, with both low- and high- gas 
fuelling. In the experiments, the divertor heat-flux is observed 
to increase at lower pedestal collisionality, but one of the 
most notable effects is that of the gas fuelling: at similar  
νped

* values, a higher gas fuelling leads to higher ELM fre-
quency, with lower ELM sizes and divertor heat-fluxes. In this 
previous study [14], the ELM energy losses were reproduced 
by the simulations, but the divertor heat-fluxes were lower 
than in experiments. The simulated ELMs were less intense, 
but lasted longer than in experiments (hence ELM energy 
losses were comparable). In the present study, more accurate 
pre-ELM equilibria were used, and larger toroidal resolutions 
as well as diamagnetic terms were included in the simulations.

In [14], the standard EFIT equilibria were used, with magn-
etic constraints only, in order to map the ne and Te profiles 
and reconstruct the JOREK Grad–Shafranov equilibria. A 
recent version of EFIT++/JEC2020 [23] was used to impose 
additional constraints (pressure, polarimetry, motional stark 
effect MSE) to the pre-ELM equilibria. The most important 
difference between the two versions of EFIT, with respect 
to ELM simulations presented here, is that the latter ver-
sion allows for pedestal currents. This modifies the magnetic 
flux gradient in the pedestal region, such that when the high- 
resolution Thomson scattering (HRTS) ne and Te profiles are 
mapped from real space onto the magnetic equilibrium, the 

Figure 1. The pressure, polarimetry and MSE constraints in EFIT, 
together with allowing for pedestal current in the equilibrium 
reconstruction, have a strong effect on the mapping of the ne and 
Te profiles from the HRTS diagnostic. This plot shows the relative 
difference, in %, between the standard EFIT and EFIT++, for the 
pedestal width of the ne, Te and pe profiles. The ψ-mapped pedestal 
width can be  >30% smaller with EFIT++.

Nucl. Fusion 57 (2017) 076006
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resulting pedestal gradient width (in ψ-space) is modified. For 
these pulses it is found, as shown in figure 1, that the gradient 
width can be diminished as much as 40% for low collision-
ality pulses (i.e. those with the largest pedestal current). This 
effect was expected to have a strong influence on the discrep-
ancy obtained in the first study of [14].

The pre-ELM ne and Te profiles used for the simulations are 
taken from the high-resolution Thomson scattering (HRTS) 
diag nostic, as described in [14, 24, 25]. In all simulations, 
Ti  =  Te is assumed, which will be discussed further in the 
context of low- and high-gas fuelling discharges. The pedestal 
current density is calculated according to the Sauter’s boot-
strap cur rent model [20]. For high ν∗ped discharges, it has been 
shown in [26, 27] that the Sauter formula [20] overestimates 
the bootstrap current, however in the present simulations this 
discrepancy was not accounted for and the Sauter formula was 
used for every discharge.

Note that the pre-ELM ne, Te and current profiles are not 
taken directly from the EFIT++ equilibrium itself, because 
EFIT++ will find the optimal equilibrium that satisfies all 
various constraints (pressure, polarimetry, MSE and magn-
etics). This can result in output profiles that are slightly dif-
ferent from the input measured HRTS profiles. Therefore, the 
original pre-ELM profiles are used, with the consistent boot-
strap current, and the Grad–Shafranov equilibrium is recal-
culated internally in JOREK, as described in [28]. Having 
equilibrium profiles and currents in coherence with the back-
ground ψ map is important in nonlinear simulations, where 
the ∇p and 

→ →
×J B terms need to be properly balanced in the 

momentum equation (3).
In simulations below, the full diamagnetic effects are used, 

as well as multiple toroidal mode numbers, which was not 
the case in the previous study [14]. The new simulations were 
run with toroidal mode numbers n  =  3,6,9,12,15. A few sim-
ulations were run with the full toroidal spectrum from 1 to 
15, n  =  1, 2, 3, ..., 15 (although this was not possible for all 
pulses). All simulations were run with a resistivity level at a 
factor 10 above the Spitzer resistivity, which depends on the 
absolute temperature profile of each pulse. The viscosity level 
is kg m s         ⋅ ⋅− − −4.10 8 1 1 for all pulses. The parallel conduc-
tivity, which also depends on the absolute temperature for 
each pulse, was taken at a factor 4 above the ion Braginskii 
value (10x below the electron value). The factor 10 in resis-
tivity results from numerical limitations: at low resistivity, 
diamagnetic effects are challenging due to strong diamagnetic 
currents obtained during the ELM crash. To avoid thin cur-
rent layers below the grid resolution and below the electron 

gyroradius, hyper-resistivity is set to η = −10hyp
13, which is 

approximately η×10 2 in the pedestal region, to ensure that 
MHD is not dominated by the numerical resistivity, rather 
than resistivity itself. The same value is used for the hyper-
viscosity µhyp and the hyper-diffusivity Dhyp.

The perpendicular diffusivity profiles ⊥D  and κ⊥ are based on 
the initial density and temperature profiles in the edge region, 
with / ρ∼ ∇⊥D 1  and /κ ∼ ∇⊥ T1 , from ψ = 0.5n  up to out-
side the separatrix (at the bottom of the profiles). Hence, the 
perpend icular diffusive fluxes ρ∇⊥D  and κ ∇⊥ T are constant 
in the pedestal, which ensures a rigid evolution of the density 

and temperature profiles. The value of ⊥D  and κ⊥ is taken to 
be m s    −5 2 1 and m s (     )⋅− −10 7 1 respectively, at ψ = 0.8n , such 
that the diffusive evolution of the profiles is much longer than 
the typical time scale of an ELM (∼1–5 ms). Radially uniform 
sources ρS  and ST are used inside the separatrix to ensure that 
the (also radially uniform) perpendicular diffusive fluxes are 
balanced at equilibrium. This particular choice of diffusive pro-
files and sources was made because it is the most robust way to 
ensure that the profiles remain identical to the initial profiles, as 
measured by the HRTS diagnostic. Note that since the simula-
tions are started with only n  =  0 (to allow for the formation 
of the stationary equilibrium), this ensures that the profiles do 
not deviate from the pre-ELM HRTS profiles in this period, 
before the n  >  0 toroidal modes are started, and the ELM crash 
begins. Eventually, integrated simulations should be run with 
more realistic transport and heating/fuelling models to deter-
mine what the exact values of diffusive parameters and sources 
should be in each JOREK simulations. However, such an inclu-
sion of JOREK into integrated modelling structures would 
require a significant investment which, at this point, cannot be 
characterised as essential with respect to the peeling–ballooning 
instabilities themselves. In any case, there is no robust and reli-
able models for turbulent transport in the pedestal region in the 
presence of an H-mode transport barrier.

The grid chosen for the simulations has elements radially 
concentrated in the pedestal region, so that the radial width 
of elements is 1.4 mm at the separatrix (at the midplane). The 
radial resolution in the core is kept high enough to avoid arti-
ficial ballooning instabilities with the highest mode number 
n  =  15. The poloidal distribution of elements is also con-
trolled to ensure a uniform poloidal resolution, including at 
the X-point. The average poloidal width is 2.7 cm. Since the 
time step of implicit schemes depends only on the nonlinear 
activity of the toroidal modes (i.e. not on the minimum ele-
ment size of the 2D grid), the usual time step of the order of 
0.5 μs, which is reduced up to 0.05 μs in the most challenging 
cases. This means that a usual ELM simulation requires 
between 2000 and 10 000 time steps.

3. Simulation results for ILW pulses

3.1. Linear stability

The first aspect of simulations to consider is the linear sta-
bility of the simulated discharges. It has now been established 
that, in JET-ILW type-I ELMy discharges with high gas fuel-
ling, the linear stability of pre-ELM equilibria is typically 
incoherent with the linear ideal MHD stability theory, unless 
Nitrogen seeding is used [26, 29]. Linear MHD calculations 
of pre-ELM stability with the ELITE code [30, 31] shows that 
the ELM onset is typically well inside the stable region of 
the j-α stability diagram, where j is the edge plasma density 
(responsible for destabilizing peeling modes), and α is the 
pedestal pressure gradient (responsible for destabilizing bal-
looning modes).

The linear stability of peeling–ballooning modes can also 
be evaluated using JOREK, including non-ideal MHD effects, 
such as resistivity, viscosity, diffusion and conductivity, NBI 

Nucl. Fusion 57 (2017) 076006
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toroidal rotation, and diamagnetic effects. This is achieved by 
starting simulations with a stable pedestal pressure, progres-
sively increasing it through the stability threshold, as shown in 
figure 2(a). Once a coherent peeling–ballooning mode starts 
growing exponentially, the pedestal pressure level is used as 
the stability threshold. Note that this is done using a fixed 
pedestal width, and with density and temperature sources that 
result in the same ne

ped and T e
ped values as in the experiments 

once the experimental pped is reached. Also, the bootstrap 
current (calculated using Sauter’s formula [20]), is evolving 
according with the pedestal density and temperature profiles.

The results for linear ideal and non-ideal MHD calcul-
ations are shown in figure 2. Figure 2(a) shows how JOREK 
is used to evaluate the linear stability of the pedestal by pro-
gressively increasing pped at fixed pedestal width. Figure 2(b) 

shows an example of the j-α diagram for the JET-ILW pulse 
83340, including the experimental pre-ELM equilibrium, the 
ideal MHD threshold (with the stability boundary) calculated 
by ELITE, and the non-ideal MHD threshold calculated by 
JOREK. Figure 2(c) shows the ideal and non-ideal calculations 
for all the ILW pulses considered in this study. This shows that 
in many cases the non-ideal MHD effects have a significant 
impact on the linear stability threshold. At this point it is not 
clear which of these particular effects has the most important 
impact on stability, and further work would be required to iso-
late each effect. It will be the scope of a future study, since this 
requires re-running each discharge 5 to 6 times (once for each 
isolated effect), which is not achievable on a short time scale.

This result demonstrates that JOREK could be used to 
improve our undestanding of MHD stability in JET-ILW 

(a) (b)

(c)

Figure 2. (a) A JOREK simulation starting from a stable pped value. The top plot shows the evolution of pped, the bottom plot shows the 
evolution (on a logarithmic y-axis) of the kinetic energy of various ballooning modes. Keeping the pedestal width constant and increasing 
pped progressively reveals the linear MHD threshold for peeling–ballooning modes (determined once a mode starts growing exponentially, 
here at ∼t 1800). The advantage over linear MHD codes is that non-ideal effects (resistivity, rotation etc) are easily included. The 
disadvantage is that it is numerically more expensive. (b) An example is shown here, for pulse 83340, to illustrate how the JOREK code 
can, in some cases, obtain a better agreement with experiments than ideal MHD calculations. This is shown in the usual j-α diagram  
(the solid red line shows the stability boundary calculated by ELITE). The dashed blue line represents the coherent evolution of αmax 
and jmax, assuming that the bootstrap current evolves when pped is increased (here according to the Sauter model). (c) This plot shows the 
linear calculations for all JET pulses included in this study, with the ELITE code (for ideal MHD), and with the JOREK code (for non-
ideal MHD). These calculations are compared to the experiments on the x-axis. Non-ideal MHD clearly provides a closer agreement with 
experiments. The red square/star is pulse 83340.

Nucl. Fusion 57 (2017) 076006
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discharges. In particular, once the physics responsible for this 
correction on ideal MHD is isolated, JOREK could be used to 
provide a reinforced MHD stability calculation for peeling–bal-
looning modes in predictive models like EPED [32]. However, 
at this point a systematic inclusion of JOREK calculations 
into predictive models is strongly limited by the fact that such 
JOREK calculations (as shown in figure 2(a)) are numerically 
more expensive than ideal MHD calculations using dedicated 
codes like ELITE.

3.2. ELM Size and divertor heat-fluxes

As shown in figure 2, linear non-ideal MHD provides a better 
agreement with experiments than ideal-MHD for linear 
calcul ations. However, linear stability provides no estimate 
or guarantee concerning the size of the ELM crash itself. As 
contradictory as it may seem, while reasonable agreement is 
obtained for linear stability, the ELM crash itself is typically 
smaller in simulations. However, it is worth noting that the 
discharges which give the best agreement (in terms of ELM 
size and divertor heat-flux) are those closest to the linear ideal 
MHD threshold for PB-stability, which are typically the low 
gas fuelling discharges. In this section, the ELM simulations 
are obtained by starting from the exact pre-ELM equilibrium 
prescribed by experimental data. (i.e. not from a progressively 
increasing pressure gradient as described above.)

The ELM size calculated in JOREK simulations with 
diamagnetic terms are smaller than in the experiments by a 
factor 2–3. This is a large decrease compared to the previous 
set of simulations without diamagnetic effects, as shown in 
figure 3(a). The experimental ELM size is determined using 
the pre- and post-ELM pressure profiles obtained from the 
HRTS diagnostic, as in [14]. It should be noted that the dia-
magnetic effects are dominating the non-linear phase of the 
ELM crash, rather than the linear burst and the initial filamen-
tation of the plasma. Of course, linear stability is also affected, 

to the extent that some pulses that are PB-unstable without dia-
magnetic terms become stable with diamagnetic terms. In most 
cases however, with the diamagnetic terms, the initial burst of 
filaments is similar, but the duration of the instability is much 
shorter with diamagnetic terms. Without ω* effects, filaments 
keep bursting through the separatrix until the excess pressure is 
evacuated from the pedestal. However with ω* effects, at most 
one or two sets of filaments burst through the separatrix, after 
which the stabilising effect of the ω* terms set an end to the 
ELM crash.

This aspect of the shortened ELM duration is certified 
by the dynamics of divertor heat fluxes. Figure  3(b) shows 
the peak heat-flux on the outer divertor for each pulse, as a 
function of pedestal collisionality ν∗ped. The experimental 
data is obtained using the Infra-Red camera diagnostic  
[1, 33], averaged over all type-I ELMs for each discharge. The 
divertor heat-flux is similar, for most pulses, to the previous 
simulations of [14]. The width of the outer divertor heat-flux 
(10–12 cm) is also similar to the experiments and to the pre-
vious simulations. The main effect of diamagnetic terms is 
to diminish the time duration of the ELM crashes. Note that 
at the lowest ν∗ped, there is a large span in peak divertor heat 
flux for the experimental points due to different gas fuelling 
levels, which has a strong influence on the ELM frequency, 
and therefore the ELM amplitude.

It should be pointed out that, of course, although simula-
tions without diamagnetic effects give a better agreement with 
the experimentally measured ELM size, they are not more 
accurate than simulations without diamagnetic terms. On the 
contrary, the increased duration of the ballooning activity 
without diamagnetic terms should be seen as a physical arte-
fact, even if it leads to the right ELM energy losses. In fact, the 
simulations without diamagnetic terms are more coherent in 
the sense that both the divertor heat-fluxes and the ELM size 
are smaller than in the experiments. Therefore, the issue is 

Figure 3. (a) This plot shows the total ELM energy losses as a function of pped, for the experiments (red circles, calculated using pre- and 
post-ELM HRTS profiles), for the simulations without diamagnetic terms (black stars), and for simulations including diamagnetic terms 
(blue triangles). The diamagnetic effects stabilise the mode activity in the late phase of the ELM, leading to shorter bursts, and hence 
smaller ELM energy losses. (b) The peak heat flux on the outer divertor as a function of ν∗ped, for the experiments (red circles), for the 
simulations without diamagnetic terms (black stars), for simulations including diamagnetic terms (blue circles), and for two theoretical ν∗ped 
scans based on pulses 83330 and 83334 (green triangles).
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now to determine why the divertor heat-flux is smaller, since 
it represents the signature of up-stream MHD activity.

To address this question, we consider the cases that do  
have a good agreement with the experiments. In par-
ticular, two cases are relatively well reproduced, both 
in terms of divertor heat flux and energy losses: dis-
charges 83330 and 83334. These are low gas fuelling 
discharges with MA T MW[ ] [ ]=I B P, , 2 , 2 , 20P T NBI  and 

MA T MW[ ] [     ]=I B P, , 2.4 , 2.4 , 25P T NBI  respectively. Using these 
two cases, a theoretical ν∗ped scan was performed by varying 
the density and temperature levels at constant pressure. This 
ensures that the ideal MHD ballooning stability remains iden-
tical. In practice, this is equivalent to changing the normali-
sation of the non-ideal MHD parameters, such as resistivity, 
viscosity, thermal conductivity, and diamagnetic effects (as 
described in section 2.1). The result is in good agreement with 
the experiments, as shown in figure 3(b). This is important as 
it demonstrates that the parallel transport of energy along field 
lines is relatively well described by the Braginskii model.

Another quantity to consider for the validity of parallel 
transport with a Braginskii model is the parallel energy, as 
defined by Eich et al [34]:

MJ m( ) [     ] ( )∥ ∥∫ε α⋅ =−s q s t t, d
t

B
2

ELM
 (15)

where s is the divertor (radial) coordinate, and αB is the angle 
between magnetic field lines and the divertor target. The 
regression scaling obtained from the experimental data on 
multiple tokamak devices [34] shows a strong dependency on 
pped and on the relative ELM size ∆WELM:

ε ⋅ = | × ×

×∆ ×

−
±

± ±

± ±

n T

W R

0.28

.

2
0.14 e,ped

0.75 0.15
e,ped
0.98 0.1

ELM
0.52 0.16

geo
1.0 0.4

MJ m[ ]∥
 

(16)

Both (15) and (16) can be calculated in simulations, and it is 
found that for cases with an ELM size that corresponds to the 
experiments, the Eich scaling is well reproduced. This is shown 

in figure  4, where the two formulas are compared, both for 
the cases with and without diamagnetic terms. The agreement 
is successful for the cases without diamagnetic terms, while 
there is a larger disparity for the cases with diamagn etic terms, 
due to the discrepancy in ELM size. However, the parallel 
heat transport model is the same regardless of the diamagnetic 
terms, and therefore, if future simulations with diamagnetic 
terms can be improved to match the exper imental ELM size, 
this indicates that the Eich scaling should be recovered.

Hence, if the linear stability from the experiments is 
well reproduced, and the parallel energy transport is also 
coherent with experimental regressions (provided the ELM 
size is reproduced), then the next logical step would be 
to look at the physics model. In particular, since low-gas 
pulses like 83330 and 83334 are relatively well reproduced 
by JOREK, the neutrals model [35, 36] could be considered 
in future simulations. However, it should be noted that one 
effect from neutrals can already be eliminated, namely the 
outward density shift observed at high gas fuelling [37–39], 
since this is already taken into account in the pre-ELM 
equilibria. Hence, if the missing neutrals were responsible 
for the lower ELM energy losses in simulations, it would 
have to do with other effects. For example, at high gas fuel-
ling, the temperature conducted along field lines would 
face larger parallel gradients in the divertor region due to 
stronger ioniz ation and charge exchange near the target, 
which would increase the parallel energy fluxes ∥ ∥κ ∇T  
in the divertor region and thus increase the rate at which 
the pedestal temper ature is evacuated. Another example 
is that the shift observed between the pre-ELM ne and Te 
pedestal profiles at high fuelling should be verified for the 
ion temper ature Ti as well, which is not considered in pre-
sent simulations, due to the time-resolution of the charge 
exchange diagnostic for these pulses (i.e. the Ti profiles are 
ELM-averaged). Hence, if the Ti profile shifts together with 
ne (as opposed to having =T Ti e), the stability of the high-
fuelling discharges would be strongly affected. Such ques-
tions should be addressed in future studies.

Figure 4. (a) The parallel energy arriving on the outer divertor can be compared against the Eich scaling law equation (16). The agreement 
is good provided the ELM size is comparable to the experiments. Hence, the best agreement is for the cases without diamagnetic terms. 

Note that the Eich scaling used here is the exact regression ε = ∆n T W R0.28 e,ped
0.75

e,ped
0.98

ELM
0.52

geo
1.0

∥ . (b) The same plot, but using modified 

exponents, within the regression limits: ε = ∆n T W R0.14 e,ped
0.6

e,ped
0.98

ELM
0.68

geo
1.0

∥ .
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3.3. Nonlinear stability and multi-ELM cycles

There is, however, another aspect of simulations which should 
be addressed, because it could have a significant impact on 
ELM energy losses: the nonlinear dynamics of ELMs, and 
more particularly, the nonlinear stability of ELMs.

One of the peculiar aspects of the simulations presented 
in section 3.2 is the absence of nonlinear coupling between 
modes during the ELM crash. In most cases, a dominant 
mode number leads to the crash, while minor coupling 
with the other modes occurs only at the end of the ELM, 
once most of the energy has already been evacuated. In 
few cases, the coupling occurs earlier in the crash, but 
there is usually still one dominant mode number. It has 
been experimentally established that large type-I ELMs 
have a strong nonlinear comp onent [40–42], notably for 
the main part of the crash. Thus, the quasi-linear aspect of 
ELMs in the simulations, even in the presence of diamagn-
etic terms, suggests that the set-up of simulations should 
be reconsidered.

In practice, any initial-value code like JOREK needs to start 
the non-axisymmetric perturbations as low numerical noise, 
which eventually organises into coherent peeling–ballooning 
structures, provided the equilibrium is unstable with respect 
to these instabilities. These peeling–ballooning structures will 
then grow exponentially, until they reach an amplitude large 
enough to perturb the background axisymmetric equilibrium, 
and thus create a crash. However, each toroidal Fourier har-
monic, which represents an individual mode number, will 
grow at its individual rate. Since these growth rates depend 
on the mode number, one mode will grow more rapidly, and 
hence reach the equilibrium before all other modes. This is 
shown in figure 5, which was run with the full spectrum of 
modes n  =  1, 2, 3, ..., 15. This simulation was performed to 

test whether one-to-one coupling between modes was required 
to obtain more nonlinear interactions between modes in the 
early phase of the ELM. However, the result is similar to the 
filtered spectrum n  =  3, 6, 9, 12, 15: nonlinear coupling only 
occurs in the late phase of the ELM.

It is worth noting that the level of coupling in the early 
phase of the ELM strongly depends on the choice of MHD 
parameters, particularly resistivity and viscosity. In cases 
with higher resistivity and viscosity, nonlinear coupling in 
the early phase of the ELM is frequently observed, as in [17, 
18]. However, the theoretical resistivity is set by the Spitzer 
value, and a higher viscous coefficient would stabilise the 
ballooning modes, which is the reason for the present choice 
of η and μ.

In experiments, the whole spectrum of modes is active 
at a certain level, not far below the equilibrium, and thus 
when an ELM arrives, all modes will crash together. It could 
even be assumed that nonlinear coupling is occurring before 
the ELM crash itself. In fact, it seems that the nonlinear 
coupling itself is responsible for the crash, as proposed in 
[43]. In order to simulate this, a state of marginal instability 
must be achieved, in which the various toroidal modes are 
fluctuating at equilibrium level without causing a crash. 
This is equivalent to going progressively from a stable to 
an unstable equilibrium, through the ELM onset threshold. 
In other words, it is equivalent to simulating multiple type-I 
ELM cycles.

JET pulse 83334 is started from a stable pedestal pressure, 
which is then restored using density fuelling and heating, 
a first small quasilinear crash is obtained, similar to those 
presented in figure  3. Further increasing the pedestal pres-
sure beyond this initial crash, strong nonlinear coupling is 
obtained, leading to a second large pedestal crash. This is 
represented in figure 6(a), which shows the evolution of the 

(a) (b)

Figure 5. (a) The kinetic energy of the modes n  =  1, ...,15 (in logarithmic scale) as a function of time. The mode n  =  15 has a slightly 
higher growth rate than the other modes. However, since the perturbations are started at a low numerical noise level, the exponential 
growth phase is long enough to cause a large delay between the arrival of n  =  15 and n  =  14 at equilibrium level. Therefore, by the time 
n  =  14 reaches equilirbium, n  =  15 has already produced a crash, which reduces pped, stabilising all other modes, and thus preventing any 
nonlinear coupling between modes. Note: the discontinuities observed at 0.40 and 0.43 ms are just a jump in numerical noise (those toroidal 
harmonics have not yet organised into peeling–ballooning structures). (b) The same plot, but not in logarithmic scale, and zoomed on the 
ELM crash itself, to show the obvious absence of any nonlinear coupling.
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peeling–ballooning modes in time. This second MHD event 
is clearly closer to a type-I ELM than the quasilinear events 
used in section 3.2.

Hence, it would be natural to attempt to use the same 
method for all pulses in order to obtain larger ELM crashes 
that would improve the comparisons in figure  3. However, 
there are fundamental issues with this approach. The first issue 
is that there is no guarantee that this second authentic type-I 
ELM will occur for all cases, and at a pped level comparable 
to each corresponding experiment. For the above example, 
JET pulse 83334, this type-I ELM occurs at a pedestal pres-
sure  ∼10% higher than in the experiments, and consequently 
has a larger ELM size and a higher divertor heat-flux. This is 
shown in figure 7.

The other issue concerns the reconstruction of the pedestal 
profiles in the pre-ELM phase. For case 83334, the width of 

the pedestal was kept constant, and only the pedestal height 
was increased, which is numerically the easier option. Ideally, 
the pedestal gradient should be prescribed at each time step, 
and for each radial point, by advanced gyro-kinetic simula-
tions, or at least by pedestal transport models like the Kinetic 
Ballooning Mode (KBM) constraint used in EPED [32]. Such 
advanced integrated modelling should be explored in the 
future.

Finally, such simulations are numerically expensive: due 
to the high level of mode activity, time steps of the order of 
0.05 μs are required in the most nonlinear phase of the crash. 
At present, the prospect of such simulations on a quantitative 
basis, using 20–30 pulses, is unconceivable given the limited 
computational resources allocated to the JOREK simulations. 
Nevertheless, a complete validation of the JOREK code will 
require its ability to predict, on a quantitative basis, both the 

(a) (b)

Figure 6. (a) The evolution of the kinetic energy of the modes for a simulation of pulse 83334, where density and temperture sources are 
used to progressively increase the pedestal pressure through the MHD stability threshold. Two clear events are observed: a quasilinear 
crash, at  −0.7 ms, which is representative of the linear stability threshold, and a nonlinear crash, at 0.0 ms, which represents a nonlinear 
MHD threshold. Although pped is not much higher than for the first quasilinear crash (∼10%), the nonlinear crash has a much larger 
amplitude. (b) After this large nonlinear crash, the ne and Te sources can be kept until a second ELM crash is found. The bottom case has 
sources a factor 2 higher than the top case, which results in an ELM period divided by 2. This is the signature of type-I ELMs: a frequency 
which increases with heating power.

Figure 7. The same plot of the ELM size and the divertor peak heat-flux, as in figure 3, but including the nonlinear ELM crash of pulse 
83334, detailed in figure 6. This demonstrates that the difference between linear and nonlinear ELM onsets can be significant.
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pre-ELM profiles and the ELM size, in agreement with exper-
iments. Therefore, this step is unavoidable.

In theory, simulating the pre-ELM phase as well as the 
ELM itself is equivalent to simulating multiple-ELM cycles. 
In practice, this is not entirely true. This large nonlinear MHD 
event in figure 6(a), which we have attributed to a type-I ELM, 
occurs after a phase of low fluctuation of the toroidal modes. 
After this ELM crash, some substantial activity remains, par-
ticularly for the lowest mode number n  =  3. Using continued 
heating and density fuelling, the pedestal can be rebuilt until 
a second ELM crash occurs. Although the ELM frequency in 
simulations is higher than in experiments (0.5–1.0 kHz), an 
encouraging characteristic of this second ELM crash is that 
it occurs after a period which directly depends on the level 
of heating and fuelling, just like type-I ELMs in experiments. 
This is shown in figure  6(b), where the bottom picture has 
heating and fuelling sources twice as large as the top picture, 
which reduces the inter-ELM period by two. However, the 
size of the second ELM also depends on the level of heating. 
This is thought to be due to the continued inter-ELM activity 
of the PB-modes, which make it difficult to achieve a large 
pedestal pressure gradient before the ELM occurs. However, 
the occurence of ELM precursors and inter-ELM fluctuations 
in both experiments and simulations [14, 28, 44] suggests that 
multiple-ELM simulations should have some level of inter-
ELM MHD activity.

Of course, further work is yet needed to study the charac-
teristics of such ELM cycles, and their comparability to type-I 
ELMs, but the power dependency provides an encouraging 
indication that these strongly nonlinear MHD events observed 
in simulations are similar to type-I ELMs.

4. Conclusion

4.1. Summary

In order to provide a quantitative validation of nonlinear MHD 
codes like JOREK, simulations need to be run for multiple 
experiments on multiple tokamak devices. This is a numerical 
and physical challenge that needs to be resolved in time to 
provide reliable predictions for future devices like JT-60SA, 
ITER and DEMO. These future tokamaks will require quanti-
tative predictions of pedestal density and temperature levels, 
as well as inter-ELM and ELM divertor heat fluxes, in order 
to improve global confinement capabilities while preventing 
divertor erosion/melting in the planning of future experiments.

In this paper, we have shown the recent progress in the 
quantitative validation of the JOREK code using JET simula-
tions. Reasonable agreement is found with the experiments 
for the linear stability of peeling–ballooning modes, which 
shows that non-ideal effects could improve predictive models 
like EPED that rely on ideal linear MHD codes. Regarding 
the pedestal collapse in simulations, diamagnetic effects are 
observed to play a strongly stabilising role, which reduces the 
total ELM energy losses. The peak heat-fluxes on the outer 
divertor are similar for cases with and without ω*, but the main 
difference comes from a damping of the nonlinear ballooning 

activity in the later phase of the ELM, which leads to a reduced 
loss in pedestal energy. The discharges which give the best 
agreement (in terms the ELM size and the divertor heat-flux) 
are those closest to the linear ideal MHD threshold for the 
peeling–ballooning stability, which are typically the low gas 
fuelling discharges.

A theoretical scan in collisionality has demonstrated that 
the experimental peak heat-flux dependency on ν∗ped is recov-
ered by the JOREK simulation. In addition, analysis of the 
divertor heat fluxes has shown that provided the ELM size is 
coherent with the experiments, the parallel energy arriving on 
the divertor target is consistent with the latest results from Eich 
et al [34]. It should be noted that this agreement was obtained 
even for cases where the simulated divertor peak heat-flux was 
lower than in the experiments, which can be misleading, and 
is due to the definition of ∥ε  as the time-integrated peak heat-
flux. Nevertheless, such positive results regarding the parallel 
energy transport, from the pedestal to the target, are encour-
aging in the present context of plasma exhaust in future fusion 
devices, for which divertor protection is a major concern.

The remaining discrepancy in ELM size between simu-
lations and experiments (still a factor 2, up to 3 in the worst 
cases) could be related to neutrals physics, since the largest dif-
ferences occur at high gas fuelling. However, some tests were 
run to expose the fact that another crucial ingredient is missing, 
which could be as important as the neutrals physics, namely, 
the nonlinear stability of ELMs. It has been shown that when 
increasing the pedestal pressure from a stable to an unstable 
level, there are two distinct thresholds: a linear threshold and a 
nonlinear threshold. Although these two thresholds are not far 
from one another in terms of pedestal pressure (∼10%), the 
resulting ELM dynamics and amplitude is entirely different. 
Simulations started with unstable pre-ELM profiles are almost 
systematically quasilinear (dominated by only one mode 
number), while simulations where the ELM emerges from 
background nonlinear fluctuations are, of course, nonlinear by 
nature, as is expected from the experimental evidence.

Such explosive instabilities will need to be addressed in 
the future, as it seems obvious that they change the picture 
of numerical ELM simulations and their quantitative valida-
tion against experiments. Such simulations are numerically 
more challenging, more expensive, and they require a more 
elaborate integrated methodology needed to provide the nec-
essary information regarding anomalous diffusive transport 
due to turbulence, as well as heating and fuelling sources. 
Eventually, the complete validation of JOREK will only be 
achieved once simulations can predict, on a quantitative basis, 
the ELM energy losses, the divertor heat fluxes, but also the 
pre-ELM pped level, which requires self-consistent simula-
tions of multiple ELM cycles.

4.2. Discussion for future improvements

This conclusion leads to a number of open questions, which 
are worth mentioning here to finalise this discussion. In addi-
tion to the peeling–ballooning instabilities used to describe 
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ELMs, small-scale turbulence simulations are needed for the 
inter-ELM regime. This is required not only for the evalua-
tion of inter-ELM divertor heat-fluxes, but also for the predic-
tion of pre-ELM pedestal pressure levels, which is determined 
broadly by how the pedestal profiles evolve until the ELM 
onset (determined by MHD stability). Turbulence codes 
like GS2, ORB5 [45, 46] (and many others not cited here) 
can evaluate the stability of KBMs in the pedestal, which 
are believed to regulate the pedestal pressure gradient during 
the inter-ELM phase [32, 47]. Although nonlinear MHD 
codes can evolve the inter-ELM pedestal profiles using ad 
hoc assumptions (e.g. fixed gradient or fixed width), in order 
to obtain reliable predictions for future devices, a coherent  
picture including turbulence is necessary.

In addition, both the inter-ELM pedestal evolution and 
the ELMs themselves share a common feature: the H-mode 
transport barrier. Significant progress has been achieved in 
recent years by nonlinear codes like HESEL, EMEDGE3D 
or CENTORI [7, 48, 49], and one of the main challenges of 
inter-ELM and ELM simulations at present is to determine 
whether a coherent description of the H-mode transport bar-
rier is required to obtain realistic and accurate evaluations 
of modes stability in the pedestal (both turbulence and PB 
modes). For example, in figure 6, the pedestal width is kept 
constant, and the pedestal height is increased; in a more real-
istic picture, the pressure gradient should be clamped (e.g. by 
some micro-turbulence constraint like KBMs), and the width 
should be increased. However, in a fluid model which does 
not solve the H-mode transport barrier, this is not straight-
forward to obtain if modes fluctuate in the pre-ELM phase. In 
figure 6, the method used works for an axisymmetric equilib-
rium with given perpendicular diffusivity profiles, but when 
modes are fluctuating in the pre-ELM phase, they modify the 
pedestal profiles constantly which makes it very challenging 
to constrain the profiles in any way. Hence, one of the most 
challenging questions that JOREK will need to address, in the 
near future, is whether simulations of multiple ELM cycles 
are possible without first resolving the H-mode transport bar-
rier in a coherent manner that includes small-scale turbulence.
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