
Abschlussarbeit im Masterstudiengang Physik

Non-Linear MHD Simulations of Mode
Locking and Disruption Onset in Tokamaks

Fabian Wieschollek

15. März 2019

Erstgutachterin: Prof. Dr. Sibylle Günter
Zweitgutachter: Dr. Stefan Recksiegel

Betreuer: Dr. Matthias Hölzl

Technische Universität München
Fakultät für Physik

durchgeführt am Max-Planck-Institut für Plasmaphysik,
Garching bei München



Abstract
Disruptions are events that occur in tokamak experiments, which lead to the loss of magnetic
confinement within a fraction of a second. As a precursor, usually large magnetic islands are
formed as a result of neoclassical tearing modes, which stop rotating by locking to conducting
structures, overlap and enforce a stochastisation of the field lines. Both islands and stochasti-
sation lead to a strong radial heat transport, which flattens the temperature profile. Enhanced
by further effects like impurity background radiation, the temperature of the whole plasma
drops, often to the order of a few electronvolt. Due to this so called "thermal quench", the
plasma resistivity increases and the plasma current decays, which is referred to as the "current
quench". The consequences of disruptions are massive heat loads, mechanical loads during
vertical displacement events or the generation of relativistic runaway electrons which threaten
wall components and supporting structures. Therefore, disruptions are a major concern for
tokamak experiments and require a more detailed understanding, to improve predictions of dis-
ruption dynamics in ITER and future reactors and to develop possible mitigation and avoidance
strategies.
In this thesis, simulations of several aspects, crucial for the understanding of the disruption

onset are carried out for the first time with the non-linear magnetohydrodynamics code JOREK-
STARWALL in realistic tokamak X-Point geometry. Since disruptions predictions require a
precise interpretation of diagnostic signals, firstly virtual diagnostic coils are built into the
code and used to analyse the signals of a typical magnetic island.
Secondly, the evolution of a (2/1) neoclassical tearing mode into a partial thermal quench

is investigated in detail. This involves the study of mode coupling by toroidicity induced ef-
fects as well as by non-linear terms in the equations. The onset of stochastisation by island
overlapping and the influence of simplified conducting structures onto the mode dynamics is
investigated. The resulting impact onto the evolution of the temperature is studied in com-
parison to theoretical predictions of the anisotropic heat transport in a plasma with magnetic
islands and stochastic layers, as well as to experimental observations. The amplitude evolu-
tion of the (2/1) mode is compared to empirical experimental predictions for the threshold of
thermal quench onset and possible improvements for this empirical description are discussed.
As third part of this thesis, a plasma unstable against a (2/1) mode and additionally exhibit-

ing a slow poloidal rotation is considered. The locking mechanism with the vacuum vessel,
during which a rotating magnetic island comes to rest in the lab frame, is studied and compared
to theoretical predictions.
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1. Introduction

1. Introduction
After the formulation of special relativity which pointed out the equivalence of matter and
energy and first nuclear physics experiments in the beginning of the last century, different
approaches have been carried out for a civil use of these findings since the end of 1940s.
While energy production by the fission of heavy nuclei has reached commercial breakthrough
decades ago, nuclear fusion is still a field of ongoing research. Magnetic confinement fusion
within the tokamak is currently the most developed and promising concept. However, the
tokamak concept still has some serious open issues to be resolved, which need extensive
theoretical and experimental investigation in order to qualify the concept for a commercial
power plant. One such issue are disruption events, in which the plasma confinement is lost in
within fractions of a second, ending the fusion process immediately. In this thesis, simulations
are carried out with a magnetohydrodynamics model for the onset and evolution of so called
locked-mode disruptions to enhance the understanding of the involved physical processes.
This introduction will at first give a short overview of the nuclear physics relevant for fusion

energy and the basic properties of the plasma state. The tokamak and its features are pre-
sented in 1.3. Next, a review of the disruptive instability, its underlying causes, consequences,
and mitigation or avoidance techniques is given. The chapter closes with a summary of the
objectives of this thesis.

1.1. Basics of nuclear fusion research
A sufficient estimate of the interacting forces between protons and neutrons inside an atomic
nucleus is given by the Bethe-Weizsäcker-formula.[87] It leads to the fact, that the binding
energy per nucleon is the highest for 56Fe. Therefore, the fission of nuclei as well as the fusion
of lighter nuclei will give rise of a net energy release. A possible reaction is given by the fusion
of Deuterium and Tritium:

D + T→ 4He + n + 17.6 MeV (1.1)

In total, 17.6 MeV is released in the form of kinetic energy of the products. However, the
fusion of the two elements requires a significant overlapping of their wave functions, which
requires the overcoming of their Coulomb Barrier. The cross-section for DT-fusion reaches
a maximum for a center-of-mass energy of 64 keV. A naive approach of shooting a beam of
Deuterium with 64 keV onto a resting Tritium target would not lead to a sufficient fusion rate,
since the competing elastic Coulomb collisions would dominate the fusion reactions. A solution
is given by heating up both species to the plasma state and confining them over long time
scales. The particle energy distribution will then be Maxwellian and the quantity determining
the likelihood of the fusion process is the reaction rate 〈σv2〉, where 〈...〉 is the averaging over
velocity space. The maximum of fusion rate is reached at about 10 keV, which corresponds
to a plasma temperature of about a hundred million Kelvin.
An efficient fusion rate requires not only the high temperature as pointed out above but also

a sufficiently large confinement time. Otherwise energy and particles are lost before fusions
process have taken place. The confinement of a plasma is possible by magnetic fields.
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1. Introduction

1.2. Properties of a plasma
On the contrary to classical states, there is no distinct phase transition from gas to plasma.
Instead it is convenient to define the degree of ionization of a gas α, which is strongly dependent
on temperature T and also the ionization energy Wion:

α = ni
nn
∝ T 3/2

ni
exp−Wion/T (1.2)

For α of a few percent, the plasma properties discussed below already dominate and one speaks
of a plasma instead of a gas. So, unless fully ionized a plasma consists of ions, electrons and
neutrals. A magnetic fusion hydrogen plasma has a typical density of about ne ∼ 1020m−3 and
is fully ionized already for T . 100 eV. By decreasing the temperature below Wion ∼ 10 eV,
recombination dominates and the plasma falls back into the gaseous state.

Debye shiedling If the density of free electrons in the plasma is sufficient high they will
shield the Coulomb Potentials of the much slower moving ions. Their effective "Debye-Hückel"
potentials decreases exponentially as a consequence, on a length scale of the Debye length
λD ≈ 7.43

√
ε0T
e2ne

. Because of that a plasma of volume L3 � λ3
D appears to be quasi neutral

on a macroscopic scale. The condition for quasi neutrality is that the time averaged number of
electrons within the Debye Sphere around each ion is much greater than one: ne4/3πλ3

D � 1.

Magnetized plasma Consisting of charged particles, a plasma interacts with electromag-
netic fields. If its motion is heavily influenced by that field it is called a magnetized plasma.
While particles can still move freely parallel to (homogeneous) magnetic field lines, its per-
pendicular motion is restricted by the Lorentz forces. In fact particles rotate with the gyration
frequency ωc = qαB/mα, where α ∈ e, i around the field lines on circles of the Lamour radius
ρL =

√
2mαT
|qα|B in average. The centre of that circular trajectories is called the guiding centre.

Particle drifts If an external force ~F is applied perpendicular the magnetic field, the position
of the guiding centre will drift away perpendicular both to force and magnetic field. This drift
velocity is given by:

~v = 1
qα

~F × ~B

B2 (1.3)

If the force field corresponds to an applied external electric field, (1.3) reduces to the charge
independent "E-cross-B" drift:

~vE =
~E × ~B

B2 (1.4)

An inhomogeneity of ~B also leads to a drift:

~v∇B = K⊥
qB

~B ×∇B
B2 , K⊥ = 1

2mv
2
⊥ (1.5)

6



1. Introduction

In terms of magnetohydrodynamics (see 2.1), where the plasma pressure has been defined,
the diagmagnetic drift can be described. It is not an actual drift of particles but results in a
variation of the net fluid velocities or densities:

~uD = −∇p×
~B

qnB2 (1.6)

For more informations about plasma physics, see for example [20].

1.3. Magnetic confinement in a tokamak

Figure 1: Schematic sketch of flux surfaces within a tokamak. Black lines represent the helical
field lines on some flux surfaces (white). Flux Ψ of the uttermost flux surface is
defined as the flux going through the blue area, while flux Φ is defined by the red
area. The magnetic axis is marked in orange. The central solenoid lies on the torus
axis (green).

The aforementioned homogeneous magnetic field lines restrict the motion of charged par-
ticles well in the perpendicular plane but can not limit the spatial expansion of a plasma in
parallel direction. The approach followed in today’s large scale experiments to overcome this
problem is to make use of toroidal magnetic configurations. However a configuration consist-
ing only of planar field coils generating a purely toroidal field would not lead to confinement:
Because of divergence freeness of the magnetic field, ∇ · Bφ = 0, it decreases radially1 with
Bφ ≈ 1/R. This would give rise to a gradient-B drift which drives a charge separation in Z
direction in turn. Obviously an incipient E-cross-B drift pointing outwards in R direction will
force the plasma to move out of the configuration. The confinement would be lost within a
fraction of a second.

1Coordinates and some definitions used in the course of this thesis are listed in Appendix A
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1. Introduction

Figure 2: Poloidal cross section
of flux surfaces of
a plasma in divertor
configuration. The
plasma is divided by
the separatrix (blue)
into the inner region of
closed magnetic field
lines and the outer re-
gion of open field lines.
Field lines outside the
separatrix hit the di-
vertor plates (black).

The charge separation, however, can be avoided by an
additional magnetic field Bθ in poloidal direction. Superpo-
sition of Bφ and Bθ yields helical field lines. In a tokamak,
Bθ is mostly produced by the toroidal plasma current IP .
The generation of helical field lines using non-planar field
coils, is a main feature of the stellarator concept which is
being under development in parallel to tokamak devices.
The classical tokamak concept builds up IP by induction:
The plasma behaves as a secondary coil of a transformer
with only one winding while a primary coil is installed next.
The central solenoid out of a ferromagnetic material that
transports the time varying magnetic flux into the machine
is therefore a crucial component.
The high turns ratio makes the amplification of the pri-

mary current to IP ∼ 1 MA possible. Since inductive cur-
rents only sustain as long as the current on the primary
side keeps changing classical tokamaks enable pulsed-mode
operation only. Pulses are usually in order of seconds. Con-
cepts of making use of neoclassical currents presented in
2.2.3 in a different context are under investigation as well
as other current drive techniques, e.g. by electromagnetic
waves.
The helical field lines form nested toroidal flux surfaces.

The perpendicular component of the magnetic field through
a surface in the toroidal plane enclosed by a flux surface (see
figure 1), Bθ, determines the poloidal flux Ψ assigned to that
flux surface. An analogous definition applies for the toroidal
flux Φ and Bφ. The safety factor[23] q, which is the ratio
of the number of toroidal turns of a field line per poloidal
turns, is then defined as:

q = dΦ
dΨ ≈

rBφ

RBθ

(1.7)

The approximation holds if Bφ and Bθ are about constant
on a flux surface.
If q is a rational number, q = n/m the field lines close in

themselves and the corresponding flux surface is called ra-
tional or resonant surface (n/m). The central poloidal axis of the tokamak, where Bθ vanishes
is called the magnetic axis. The safety factor close to the magnetic axis is usually referred
as q0.2 Further details of the magnetic field configuration were summarized by Boozer [7,
Chapter III].
The magnetic configuration explained above is also called the circular tokamak. Improve-

ments in operation performance suggested a shaping of the poloidal cross section of the flux
2Further definitions describing a plasma configuration that are used within this thesis are listed in Appendix
A
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1. Introduction

surfaces, so that it differs from the cylindrical shape. The shaping is realized by an additional
poloidal magnetic field. One common configuration is the divertor plasma (see figure 2). More
details about tokamaks can be found in [90].
Like all magnetic confinement concepts which have been developed, the tokamak too is

prone to plasma instabilities of various kinds. An instability is a self-reinforcing perturbation or
"mode" caused by an arbitrary small force acting on a plasma in equilibrium. Many instabilities
can be described well by the magnetohydrodynamics (MHD) description and therefore are
classified as MHD instabilities. As long as a perturbation is small the problem can be linearised
and treated using an energy principle similar to minimization of the potential energy of a system
in classical mechanics[4],[22].

1.4. The disruption

t

a.
u
.

Precursor TQ CQ

Current
Temperature

Figure 3: Schematic sequence of events during a disruption.

The disruptive instability commonly known just as a disruption is the complete loss of the
energy and magnetic confinement of the plasma within the order of a few milliseconds to about
one second. The nature of a disruption is highly varying but there are three main features
observed in every disruption’s sequence (see figure 3): first, some precursor instabilities occur
driving the plasma to the onset of a disruption. This process can be rather complex and last
up to a few hundred milliseconds. Second, the sudden loss of the thermal energy stored within
the plasma, which is referred to as thermal quench (TQ). This can result in temperatures
dropping by several orders of magnitude to just a few eV even in the plasma centre. Third,
due to the low temperature, the resistivity rapidly increases due to its strong dependency on
the temperature[12] and therefore the plasma current decays. This is referred to as current
quench (CQ).
It does not only mean an immediate end of the fusion process but also massive stress on

the machine, i.e. heat loads on first wall components and enormous Lorentz forces caused
by induced halo and eddy currents acting on the vacuum vessel during the current quench[32].
This can lead to serious damage of first wall, vacuum vessel and further structures. Because of
that, several approaches are under investigation which may predict, avoid or at least mitigate
disruptions. The damage potential of disruptions scales with the machine size and therefore
they must be treated effectively in ITER and future devices. It is expected that none at all or
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1. Introduction

only a few uncontrolled disruptions can be tolerated by a fusion reactor during its full lifetime.
Nevertheless, it has been shown that disruptions already pose a serious issue in today’s devices.
Because of this, disruption mitigation and avoidance techniques are standard tools today for
plasma experiments. Their effectiveness also for ITER at full operation is not yet clear however.
An overview of disruptions with a focus on ITER is given by Hender et al. [35, Chapter 3].

Fundamental MHD activity of the disruption onset Disruptions have been observed
even in the early stages of tokamak research and were firstly described as a hard alteration of the
electron density and "diffusion of charged particles to the chamber walls"[27]. A deeper insight
into their causes and consequences only became possible by an improvement of diagnostic tools,
namely external coils for the identification of MHD-modes[83],[68] and a deeper understanding
of MHD itself. From that, it was accepted that current driven MHD instabilities play a crucial
role during the disruption onset. That is the tearing mode on the one hand: due to finite
plasma resistivity magnetic field lines around a q = m/n rational surface reconnect changing
the topology of the magnetic confinement with toroidal periodicity n and poloidal periodicity
m[24],[23]. The newly formed so called magnetic islands reduce energy confinement of the
plasma.
On the other hand, if a rational surface lies outside or on the surface of the plasma, the

corresponding instability is called external kink mode. A surface kink leads to a torque which
deforms the plasma periodically[88]. From stability analysis of the kink mode, it has already
been derived during the earlier times of fusion research[48],[73] that the pinch and toroidal
geometries would be unstable against kink modes with mode numbers m = 1 and m = 2.
Further calculations for a broad range of possible current profiles[10] have shown that a plasma
will be unstable to (m/n) tearing or kink modes if (m − 1) < nq0 < nqa < m. A further
general prediction from theory is that a mode tends to be unstable always if the relative current
gradient 1

j
dj
dr is steep. Therefore, due to the low current density on the plasma surface the

confinement is always prone to instabilities if a rational surface is close to the surface[10],[6].
Experimental studies[68] and simulations[91] for various disruptive plasma discharges with

q(a) > 2 have shown that the (2/1) tearing mode commonly plays a crucial role during
disruption onset. Over years, it has been experimentally proven[55],[31],[2] that the (2/1) external
kink also triggers disruptions. Therefore q(a) < 2 was identified as hard limit to avoid this
type of disruptions.

The density limit This raises the question why a tearing mode grows if the initial current
profile was stable against any modes. An explanation comes from the assumption that the
edge plasma (i.e. for q > 2) gets cooled down and due to the increase of resistance the current
density gradient outside of the q = 2 surface steepens destabilizing the (2/1) tearing mode.
A common cause for that cooling is the radiation instability: if the plasma is in a thermo-
dynamic equilibrium, radiative losses are proportional to the square root of the temperature
and compensated by heating power. In a fully ionized plasma the radiative losses are due to
bremsstrahlung. Partly ionized elements lead to additional temperature dependent radiation
losses. This is a concern even for low-Z impurities in the outer region, where they can change
the thermal equilibrium significantly. In an extreme case, the temperature of the plasma edge
is lowered to tenths of eV in a poloidally asymmetric region, mostly located around the diver-
tor, due to the decrease of thermal conductivity. This instability is called a MARFE[51] which
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1. Introduction

often occurs during a disruption, triggering (3/1) and (4/1) modes.
These radiation losses scale with n2

e for given heating power and extensive research about
a density limit for safe reactor operation has been carried out over the years[29],[28] considering
more effects besides radiation collapses. However, due to the lack of understanding of the
underlying physics a general scaling law for the density limit could not be derived yet. Yet, a
parameter space for tokamak operation can roughly be isolated and is often depicted as the
Hugill diagram (see [29], [89], etc.) . A low density limit, which is mainly important for
startup scenarios only, can be derived if we take generation of runaway electrons (REs) into
account. REs are a result of the interplay between the toroidal electric field that accelerates
the plasma electrons and the decelerating friction due to collisions: below a critical density,
the friction forces become small enough, that a specific fraction of the electrons is accelerated
towards relativistic velocities.[49]. In virtue of their high energies REs have a huge damaging
potential on plasma facing component[25]. The generation of REs often sets in during the later
phase of a disruption, too.

Mode locking Based on the reached limit, disruptions were mainly categorized into two
categories[89]: If the density limit is reached, the initial (2/1) tearing mode starts to grow
and still rotates with the rest of the plasma at frequencies of up to some kHz. After the
perturbation reaches a critical amplitude, interaction with the wall by j × B forces results in
a significant deceleration of plasma rotation. This further destabilizes the mode and finally
leads to mode locking. Meanwhile, non-linear coupling will destabilize more modes and if
neighbouring islands overlap magnetic field lines will become stochastic[67],[11]. Experiments
have shown that modes like the (3/1), (3/2)[78] (1/1) or even (5/3)[68] get excited. Both
the existence of islands itself and also the stochastization increase the radial heat transport
and cause a flattening of temperature profiles in the affected region. This process takes place
typically in ms and may lead first to a minor disruption, that is an incomplete TQ, from which
the temperature profile recovers. When q0 drops below unity due to current peaking in the
centre, as a result of minor disruptions, the (1/1) internal kink mode gets destabilized, which
leads to a full stochastization of the plasma. Plasma current decays due to the rapid increase
of resistivity. The exact physics of TQ and CQ phases remain not fully understood.
Other disruption types like low-q disruptions, in which the (1/1) external kink mode plays

a crucial role, exists but are not the target of this thesis. An axisymmetric instability called
"vertical displacement event", which is the loss of control of vertical position in an elongated
plasma, can also lead into a disruptive situation: if the plasma moves into the first wall, a
major disruption will arise, where thermal and current quench set in simultaneously. On the
other hand VDEs can also be the consequence of density limit or locked mode disruptions.

Prediction, mitigation and avoidance Due to their impact on the machine, disruptions
need sophisticated handling strategies. The first step is to identify a disruption during its onset
and to predict its harmfulness. This needs an estimation of thresholds of plasma parameters,
for which the likelihood for a disruption gets significant. Apparently signals of (2/1) modes are
of great relevance here. Due to the lack of detailed understanding of the disruption onset the
precise determination of these thresholds is still a field of theoretical and experimental[63],[86],[79]
research. The plasma state needs to be updated in real time, i.e. in the order of a few ms, to
decide ideally within a minimum warning time[85], which actions need to be taken:
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If a disruption is predicted to be small or could have been identified in a very early stage it
is more likely to fully avoid its further development. Avoidance can be possible by changing
the plasma parameters through the control systems to move the plasma into a more stable
operational regime. Stabilization of neoclassical tearing modes (see 2.2.3) by compensating
for the missing bootstrap current using electron cyclotron current drive is currently considered
a promising technique for disruption avoidance.[42],[74]
In other cases disruptions are not avoidable and disruption mitigation systems (DMS) are

activated to reduce the consequences of the disruption to a level which can be tolerated by
the machine. Therefore DMSs aim to convert plasma energy into electromagnetic radiation to
lower thermal heat loads, minimize mechanical loads during VDEs and avoid the generation of
REs.[50],[82] Mitigation can be achieved by massive injection of deuterium and high-Z impurities,
like Argon or Neon. The most explored technique is called massive gas injection,[64],[39] another
concept is the injection of material in form of shattered pellets.[13]

1.5. Numerical simulations in fusion research
A crucial tool of today’s research The limitations of diagnostics and the high complexity
of experiments have motivated the need for simulations. Based on an appropriate physics
model, observations in experiments can be reproduced. If a simulation passes a detailed
validation on the basis of experimental results, it gives the possibility to obtain information
about experiments, which cannot directly be measured. For example an experiment can only
measure temperatures at some points limited by the installed instruments, while the simulation
will consistently calculate temperatures over the whole plasma. Therefore it enhances the
understanding of the theoretical mechanism.
Besides simulations can also have a predictive character: present machines can not match

all parameters of future device machines, so that meaningful predictions get only possible by
simulating future devices. Findings from experiments are thus extrapolated by the simulations.

Simulations of disruptions First simulations of disruptions were carried out in the eighties
which already confirmed the relevance of (2/1) tearing modes[81] and locking mechanisms[65].Yet
due to the lack of computational capacities but also huge uncertainties of the underlying phys-
ical processes only very simplified models could be implemented. Typical strategies were to
ignore mode coupling, to linearise and reduce the MHD equations, to neglect any non-MHD
activity or to reduce the number of dimensions and only consider simple geometries[41]. Never-
theless the understanding of many details of MHD acitivity during disruption onset and thermal
quench could be qualitatively improved.
Realistic simulations of disruptions in existing machines and predictions for ITER need more

sophisticated models and codes. Currently in use for that purpose are mainly the 3D non-linear
extended MHD codes NIMROD,[58] M3D,[62] M3D-C1[45] and JOREK (see 3.1).
Several effects of disruptions in existing machines have been simulated successfully. This

includes a wide range of VDE-simulations, showing good agreement of the codes.[46] With
JOREK and M3D-C1 simulations of VDEs in ITER have been carried out.[1] Also a model for
runaway electrons to study their interaction with the background plasma has been implemented
recently into JOREK.[3]
The triggering of a disruption by MGI, which is of great interest for the development of
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DMSs for ITER, has been simulated for a JET plasma.[16] Also, simulations of shattered pellet
injections in JET exist[43].
Great gaps in simulation of a full disruption onset still exist. Yet it is of particular relevance

since only simulations can give a quantitative basis for the identification of operational limits
of ITER for operational scenarios that are prone to disruptions. A better understanding of the
onset will therefore enhance disruption avoidance and mitigation schemes significantly. These
detailed simulations also need to investigate the role of more complex disruption precursors
like edge localized modes or sawtooth instabilities in ITER.
Many simulations of specific aspects exist which does not give a full picture of a disruption

onset yet: for example simulations of NTM onset in current machines[9] are available, which
however do not end in a disruption. By contrast simulations of thermal quenches were made,
which roughly confirm experimental observations but already assume the existence of locked
islands.[78]
The long term goal is therefore to enable the possibility of simulating the full sequence

of "natural" and mitigated disruptions of relevant categories in ITER. Hence the relevant
mechanisms of disruption onset and consequences need to be implemented and validated.
Based on these simulations the opportunities of disruption avoidance and mitigation systems
will be reviewed to predict realistic instructions for disruption mitigation or avoidance in ITER.

1.6. Objectives of this work
This thesis demonstrates some of the most important elements for disruptions simulations
and their validation with the JOREK code. For this purpose, in ASDEX Upgrade geometry,
(1) virtual diagnostic coils are set up and the signals caused by a (2/1) mode are analysed,
(2) the development of a (2/1) locked mode into a partial thermal quench is simulated, and
(3) the interaction of a rotating magnetic island with conducting structures is studied. These
objectives needs to be seen in light of the long term goal of disruption simulations.

(1) Full simulations of a disruption sequence including the reactions of mitigation or avoid-
ance systems also needs to consider appropriate diagnostic signals. Theories derived for
very simple cases are commonly used for its analysis. However, a systematic validation
of this theory in realistic, toroidal geometries has never been carried out. Therefore a set
of diagnostic coils will be implemented for a simulation of locked tearing modes as part
of this thesis. The signal will be investigated and compared to the theory to estimate
its actual validity.

(2) A (2/1) non-rotating tearing mode will be excited through a tearing mode unstable
equilibrium current. The onset of stochastisation with respect to the mode width and its
influence on temperature profiles are relevant objectives hereby. Hence it will be checked
if this excitation already leads to a thermal quench. The simulations are carried out with
and without an ideal wall to analysis the mode suppression effect by the conducting wall.

(3) The interaction of poloidal rotation with walls of different resistivities is investigated. It
will be checked for which resistivity the momentum transfer is the strongest, i.e. the
locking occurs the fastest.
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1.7. Thesis outline
The first part of this thesis is structured as follows: Chapter 2 will give a detailed background
about the physics involved in a thermal quench. This includes an overview about magnetohy-
drodynamics, (neoclassical) tearing modes, field stochastisation and mode locking. Chapter
3.1 introduces the non-linear magnetohydrodynamics code JOREK, its coupling with the free
boundary extension STARWALL, as well as diagnostic tools.
The second part presents and discusses the simulations which have been carried out in the

course of this thesis: Chapter 4 describes, how virtual diagnostic signals of a (2/1) mode have
been produced. They are compared to some theoretical predictions. Chapter 5 contains the
results of the simulation of a partial thermal quench. A series of different physical aspects,
including the analysis of mode coupling, stochastisation and the effects on the temperature
profile are investigated. Chapter 6 describes the the simulation of plasma rotation and the
interaction of the rotating plasma with the wall for different resistivites.
Chapter 7 summarizes the work and gives an outlook. This includes in particular possible

simulations that are based on the partial thermal quench to enhance the knowledge about
disruptions and their mitigation.
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Part I.
Background
2. Theoretical Background
The next section will give a detailed theoretical background for this work. The magnetohydro-
dynamics formulation is introduced first. From that basis, the relevant physical mechanisms
involved in disruptions are introduced. Finally an overview of diagnostic tools is given to anal-
yse MHD instabilities in experiments, which are also crucial for the prediction of disruptions.

2.1. Magnetohydrodynamic description of a plasma
A brief overview of magnetohydrodynamics (MHD) is given in this chapter. A more compre-
hensive discussion is for example given by Schnack [71].

2.1.1 From kinetic equations to multi-fluid equations
Kinetic equation The description of a magnetized plasma is a many body problem consist-
ing of typically N = 1020 particles per m3. We assume here for simplicity, that the plasma
is fully ionized (i.e. no non-elastic collisions) and does not exhibit impurities. The particles
of each species α - electrons and ions - can be described by distributions in phase space for
a given time point t0: fα,N(~x,~v, t0) = ∑N

i δ(~x − ~xi(t0))δ(~v − ~vi(t0)). As we are dealing
with fusion plasmas, the Lorentz force ~FN = qα( ~EN + ~v × ~BN) is the only relevant force
acting on the particles. The electric and magnetic fields ~EN and ~BN are determined by the
fα,N themselves and Maxwell’s equations. The temporal evolution of the distributions is then
exactly given by the continuity equation dfα,N/dt = 0.
Apparently this system of N differential equations can not be solved directly and instead an

appropriate approximate description is needed, i.e. a description which can be fully determined
by macroscopic quantities and still predicts the plasma behaviour sufficiently well. Therefore,
we replace fα,N by a continuous density function fα by ensemble averaging, which means that
individual particles become indistinguishable. Also, the electric ~E and magnetic ~B fields are
now determined by fα. Of course, these three macroscopic quantities can not describe the
exact behaviour of particles on a microscopic scale any more. However, depending on the
initial distribution and the time scales we are looking at, these microscopic interactions, which
are summarized as collisions, can still have significant influence onto the macroscopic scale.
Therefore, the collision operator (∂fα/∂t)coll. needs to be introduced. The continuity equation
is then modified to:

dfα(~x,~v, t)
dt =

(
∂fα
∂t

)
coll

⇔ ∂fα
∂t

+ ~v · ∇fα + qα
mα

(
~E + ~v × ~B

)
· ∇~vfα =

(
∂fα
∂t

)
coll
, (2.1)
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2. Theoretical Background

which is known as the kinetic equation.

Moments of distribution The next assumption is that fα is close to Maxwellian, which
means that the plasma is in thermal equilibrium and the collision operator for collisions between
particles of only one species is close to zero. The plasma can then be treated as a fluid.
In this case, one can average the kinetic equation, where fα is replaced by its moments,

which are macroscopic quantities again. The kth order moment is defined by∫
R
~v ⊗ ...⊗ ~v︸ ︷︷ ︸

k times

fαd3v (2.2)

For k = 0, the particle density nα is obtained:

nα =
∫
R3
fαd3v (2.3)

For k = 1, the fluid velocity ~uα is obtained:

~uα = 1
nα

∫
R3
~vfαd3v (2.4)

We can define the random thermal motion ~w = ~v − ~uα and find that the pressure tensor ¯̄Pα
is given by the second moment regarding ~w:

¯̄Pα = mα

∫
R3
~w ⊗ ~wfαd3v (2.5)

It is convenient to distinguish between the antisymmetric part ¯̄πα and the isotropic pressure
pα, so that ¯̄Pα = pα

¯̄1 + πα, where ¯̄1 is the unit tensor. When the plasma is assumed to be in
thermal equilibrium, the ideal gas law can be applied: pα = nαkBTα, with the temperature of
the species Tα and the Boltzmann constant kB.
We only need the symmetric part of the third moment, which is the heat flux ~qα:

~qα = mα

∫
R3
~w
|~w|2

2 fαd3v (2.6)

Integrals of the kinetic equation To yield fluid equations, we integrate the kinetic equation
over velocity space. Since we only consider elastic collisions and the number of particles is
conserved, the integral of the collision operator will vanish, otherwise we could define it as a
particle source term here. Note also, that fα(|~v| → ∞)→ 0.
Hence we get the continuity equation for each species:

∂nα
∂t

+∇ · (nα~uα) = 0 (2.7)

We had to insert the moments of zero and first order here.
Next, we multiply (2.1) with ~vα and integrate to yield the force balance after some rear-

rangement:

mαnα
d~uα
dt = −∇ · ¯̄Pα + nαqα( ~E + ~uα × ~B) + ~Rαβ (2.8)
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~Rαβ is the first momentum of that part of the collision operator for collisions with unlike
species. Its physical meaning is a friction force and it can only be calculated if a formulation
for (∂fα/∂t)coll is given. We had to insert the moments of zero, first and second order here.
Finally, we multiply (2.1) with ms|~v|2/2 to obtain the energy equation:

∂t(nαεα) +∇(nαεα~uα + ¯̄πα · ~uα + pα~uα + ~qα) = nαqα ~E · ~uα +Qαβ + ~Rα,β · ~uα (2.9)

εα = 3/2 pα
nα

+ 1/2mα|~uα|2 is the specific total energy. Qαβ is the second momentum of that
part of the collision operator for collisions with unlike species. Its physical meaning is heat
transfer from particles of species β to the ones of α. We had to insert the moments of zeroth
to third order here.

Closure Apparently each equation (2.7)-(2.9) contains at least one moment of a higher
order than the order of the equation itself. Therefore we need to find a closure, which is to
find an additional equation from independent physical principles that defines those moments
of highest order. Here we need a definition of the conductive heat flux, which is given by the
Braginskii closure[8]:

~qα = −nαχα‖∇‖Tα − nαχαc∇cTα − nαχα⊥∇⊥Tα (2.10)

Where χαx are the coefficients for the parallel to ~B and perpendicular heat transport. Transport
along field lines is typically by eight to ten orders of magnitude higher than transport in the
perpendicular direction.

2.1.2 From bi-fluid equations to extended Magnetohydrodynamics
Scaling parameters To yield Magnetohydrodynamic equations, the above equations (2.7)-
(2.9) for each species are now reduced to one set of equations. After comparing the magnitudes
of the phsycial effects of each fluid, it is convenient to neglect small terms. At first we can
assume that the system length is much bigger than the Debye length, ε1 = λD/L� 1, what
implies quasi neutrality, ∇ · E → 0, as explained in 1.2. Second, ε2 = me/mi � 1, so that
we can neglect electron inertia.
Considering a hydrogen plasma (qi = −qe = e), it follows for the fluid-variables, that:

n = ne = ni (2.11)
ρ = nimi + neme ≈ nmi (2.12)

~v = 1
ρ

(mini~ui +mene~ue) ≈ ~ui (2.13)

~j = eniui − eneu = en(ui − ue) (2.14)
p = pi + pe (2.15)

Derivations By summing up the continuity equations (2.7) we obtain

∂tρ+∇ · (ρ~v) = 0 (2.16)
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By summing up the force balances (2.8) and using that Rie = −Rie we get

ρdt~v = −∇p+~j × ~B (2.17)

To yield an equation for the pressure, we first have to multiply both force balances by the
corresponding velocity and then subtract these from the energy equations. After introducing
heat capacity ratio for a monatomic gas, γ = 5/3, and adding both equations, some rear-
rangements, approximating the heat source by Qα,β = 3nα

τα
(Tα − Tβ) and interpreting the

friction force as an effect of the resistivity, ~Rei = −η e

mi

ρ ~J , we have the pressure equations

1
γ − 1∂tpi + 1

γ − 1~u · ∇pi + γ

γ − 1pi∇ · ~u+∇ · ~qi + ¯̄πi : ∇~u = 3 ne
mi

(Ti − Te) (2.18)

1
γ − 1∂tpe + 1

γ − 1~u · ∇pe + γ

γ − 1pe∇ · ~u+∇ · ~qe + ¯̄πe : ∇~u =

πe : ∇
(
mi

eρ
~J

)
− 3 ne

mi

(Ti − Te) + η| ~J |2 (2.19)

Generalized Ohm’s law As ∇·E = 0 due to quasi-neutrality, another non-trivial expression
for the electric field is necessary. This can be derived from the electron’s equation of motion
(2.8) by re writing it in terms of the one-fluid velocity ~v

~E + ~v × ~B = η ~J − mi

ρe
∇ · ¯̄πe + mi

ρe
~J × ~B − mi

ρe
∇pe (2.20)

Ideal and Resistive MHD The equations (2.16)-(2.20) are the formulation of the extended
MHD, which contains equations for pressure, and terms for resistivity and two-fluid effects. For
different scaling parameters it would be possible to derive ideal MHD equations, which neglect
resistive effects. For a hot fusion plasma, the description using ideal MHD is often sufficient.
However the understanding of resistive instabilities requires the resistive MHD at least in some
layers within the plasma. It would be also possible to close the system of equations already
with the second moment. Since heat fluxes play a crucial role during the disruption onset, the
extended MHD including also third moment terms, is required here.

2.2. Tearing modes and magnetic islands
2.2.1 Classical tearing mode theory
A global instability which can be described well within the resistive MHD framework is the
Tearing Mode. While the resistive effects only play a role within layers with widths in order of
Lamour radius, these modes can change the topology of B globally by reconnection.

Stability of a current sheet The phenomenon of magnetic reconnection can be understood
on a current sheet: let the equilibrium current pointing in negative z-direction, as depicted
in figure 4. This implies a magnetic field of ~B0(x) = −B0x/L~ey, where L is the spatial
extent of the current sheet in x-direction. The plasma is now initially perturbed periodically
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Figure 4: Equilibrium fields (blue) and perturbed fields (red) of a current sheet. Within the
area of width δ resistive MHD applies. The forces that act on an exemplary volume
of plasma (red dot) are also shown.

in y-direction by an external force ~Fext. That flow of charged particles will induce a periodic
current ~j1 in Z direction regarding Ohm’s law. This means in turn a restoring Lorentz force of
~FL(x) = −σ~vext| ~B0(x)|2. Due to the strong dependency on ~B0, there will be a region of width
δ around x = 0, where some arbitrary small external force can not be retained by the plasma
any more. Within the layer, the induced current becomes dominating. Regarding linearised
Maxwell’s equations, this implies a growing perturbed magnetic field ∂tB1,x = (~k × ~j1)x.
Superposition of ~B0 and ~B1 implies a twisting of the field lines towards the x-axis. Due to
divergence freedom of magnetic fields, we will have a periodic reconnection of the lines. This
is the basic concept of the linear tearing mode. During growth of that instability, the magnetic
field for x > δ will be affected also, provoking further reconnection until a macroscopic
magnetic island is produced.
A situation similar to a current sheet can be found in a tokamak around rational surfaces

due to the shear. The equilibrium field of the current sheet ~B0 now corresponds to the so
called magnetic helical field ~B∗0 . Assuming constant shear around rs it is then given by:

~B∗0 ≈ ~B0(r)− ~B0(rs)
r

rs
(2.21)

Stability parameter and timescales The orientation of the perturbed quantities deter-
mines if a perturbation can stabilize itself. Therefore, it is convenient to define the stability
parameter by considering ~B1.

∆′ ≡ k[B1,y(δ/2)−B1,y(−δ/2)]
|B1,x|

, (2.22)

If ∆′ < 0, ~j1 ‖ ~j0 and therefore the equilibrium field gets strengthened. Otherwise the mode
is unstable as it is the case for a current sheet. ∆′ is also a quantity for its linear growth rate
γ. The timescale for reconnection is much greater than Alfven time-scale but much smaller

19
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than resistive-diffusion time, so that
L

vA
= τA �

1
γ
� τR ≈

µ0a
2

η
(2.23)

Tearing mode equation For further treatment of tearing modes, it is convenient to describe
the magnetic fields by flux functions, i.e. ~B = ∇Ψ×~ez. The perturbed flux regarding a rational
surface (m/n) is then given by Ψ1 = Ψ1(r) exp[i(mθ − nφ)].
The corresponding components of ~B are:

Br = <
(

1
r

∂Ψ
∂θ

)
(2.24)

Bθ = <
(
−dΨ
dr

)
(2.25)

Outside the resistive layer, stability can be investigated by an energy principle for ideal MHD.
From that the tearing mode equation is derived:

∆Ψ1 −
µ0drj0,z

B0,θ(r)(1− q(r)n/m)Ψ1 = 0 (2.26)

Two independent solutions have to be found for Ψ1 inside and outside of the rational surface.
The resistive layer δ is assumed to be arbitrary thin. Due to linearity both solution can now be
scaled in such a way that it matches the condition Ψ1(r−s = rs − δ/2) = Ψ1(r+

s = rs + δ/2)
to yield continuity of Ψ1 if δ → 0. However this implies a sudden change of Ψ′1 around rs.
This jump

∆′ =
[

1
Ψ1

dΨ1

dr

]r+
s

r−
s

(2.27)

is equivalent to the stability parameter in (2.22) . (2.26) exhibits the strong dependence on
the current density gradient. Calculations for explicitly given current gradients have shown
that for drj0,z(r > rs) > drj0,z(r < rs) the mode tends to be unstable. This is in accordance
to the experimental observations during disruption onset as introduced in 1.4.
The energy principle for the tearing mode shows, that the stabilizing energy grows with m,

i.e. ∆′ ≈ −2m/rs in cases where classical tearing modes are stable. Therefore tearing modes
with low poloidal mode number are usually more likely observed.

Magnetic Islands In fact the linear treatment of tearing mode is only valid in the first
moment of its occurrence. Since it changes the topology of the magnetic field, its evolution is
mainly a non-linear process. This newly formed field line structure is given by the superposition
of Ψ1 and Ψ0. It yields the occurrence of magnetic islands, which are areas of nested flux
surfaces that are isolated from the bulk of the plasma (see figure 5). Islands behave periodic,
with a periodicity determined by m and n of the corresponding tearing mode. An island
reaches its maximum radial expansion at the O-Point which is the island width given by:

W = 4

√√√√ Ψ1

Ψ0
′′ = 4

√
B1,r

B0,θ

rsq

mq′
. (2.28)
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Figure 5: Flux surfaces after occurrence of a (2/1) island. The surface in blue is also called
the island separatrix, as it is the boundary inside the island and the boundary region.
ζ ≡ θ − n

m
φ is called the magnetic coordinate. O-Points at ζ = π/2 and ζ = 3π/2;

X-Points at ζ = 0 and ζ = π.

Rutherford equation Understanding the growth rate of the island requires a focus on the
mechanisms within the island itself. However only outside the island the plasma can still be
treated within ideal MHD where (2.26) holds and its solution has to be matched at the island
separatrix now. The stability parameter is now defined by a non-linear definition considering
an integral of the current distribution within the island. Proceeding from that the evolution
of island width is derived as being:

τR
rs

dW

dt
= rs∆′. (2.29)

with the resistive timescale τR = 0.82µ0σr
2
s . (2.29) is known as Rutherford equation, which

does not take into account the impact of the island on kinetic profiles which will influence the
tearing mode stability in turn. Therefore, this formulation is also just valid in the first phase
of island growth.

2.2.2 Effects on temperature profile
Indeed the island will have a significant influence on the temperature profile after reaching a
critical island width since the islands yields a connection of different radial regions. The radial
gradient of the equilibrium temperature profile will lead to an initial temperature gradient on
the island separatrix, which is of order ∇‖T ≈ B1,r/Bφ∇‖T . Since κ‖ � κ⊥ holds, as shown
in section 2.1.1, strong heat fluxes can be expected around the island. Expressing B1,r in
terms of W and taking divergence freeness of ~q leads to an expression of the temperature
gradient for non vanishing W :κ‖

[(
W

2

)2 nss
R0rs

]2

+ κ⊥

∇2
⊥T ≈ 0 (2.30)
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This implies a critical island width wc, for which the temperature gradient around the O-Point
of the island will vanish. As a result, the temperature and pressure profile starts to get flattened
around rs. By reformulation and considering some other effects, Fitzpatrick formulated wc
as[19]

wc = 5.1 4

√
κ⊥
κ‖

√
R0rs
nss

(2.31)

In fact, an axisymmetric flattening of the temperature, that exceeds the whole island is only
reached, if the island reaches an with of 3wc to 4wc. [40, Section 5.1]

Non-linear saturation The flattening of the temperature profile also affects the current
distribution by a modification of resistivity around the island. Therefore the driving current
gradient will flatten and the stability parameter decreases monotonously with further island
growth. This implies a saturated island width, which is being approached exponentially with
time:

W (t) = Wsat

[
1− exp

(
−tr

2∆′(0)
τRWsat

)]
(2.32)

Wsat is determined by initial drj0.

2.2.3 Neoclassical tearing modes
As described in the last section the current density is the driving quantity of tearing modes.
Classical theory only considers the externally driven inductive current. In addition the neoclas-
sical currents present in finite β plasma influence the stability of tearing mode, which leads to
the class of so called neoclassical tearing modes (NTMs). Since NTMs become more relevant
in high pressure plasmas, they limit the maximum achievable pressure. To quantify the mode
growth of NTMs, the Rutherford-equation needs to be extended.

Bootstrap current The main contribution to the non-inductive currents comes from the
bootstrap current. It is a result of the inhomogeneity of Bφ, which leads to a gradient drift,
(1.5). Because of this, the toroidal mobility of particles is limited and they get trapped on
so called "banana-orbits". These trapped particles collide with free ones and accelerate them.
Taking the pressure gradient into account the effect leads to an effective current in terms of
MHD. This so called bootstrap current is mainly carried by the free, accelerated electrons and
is quantified by:

jbs ∝
√
r

R0

∇p
Bθ

≈ −
√
r

R0

1
Lp

(2.33)

with the pressure scale length Lp = −p/(dp/dr). A more precise formulation has been derived
by Sauter.[70]

Modified Rutherford equation The Pfirsch-Schlüter current, which guarantees ∇ · j = 0,
modifies the stability of TMs also. Its influence is quantified by the Glasser-Greene-Johnson-
term[26].
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Taking both effects into account the Rutherford equation now reads as:

τR
rs

dw
dt = rs∆′(w) + csatfGGJ

√
r3
s

R0

Lq
Lp

βp
w

(2.34)

csat is a constant that is dependent on the saturated island width, fGGJ is a constant given
by the Glasser-Greene-Johnson-term, Lq is the q scale length, similar defined to Lp and βp =
〈p〉/B2

θ/2µ0 is the poloidal plasma beta.
The neoclassical drive can now be understood as follows: by the flattening of the pressure

profile within the island the bootstrap current is decreased helically on the resonant surface.
This is equivalent to an "effective" current pointing in the same direction like the perturbed
current j1 and hence drives the island growth. That neoclassical drive decreases with increasing
island width, therefore the neoclassical fraction in (2.34) is proportional to w−1. However,
(2.34) exhibits an singularity for arbitrary small islands and can not predict its growth rate
correctly. In fact the assumption of complete flattening breaks down for small island sizes
below W0 given in (2.31), which is referred as the "transport threshold". The neoclassical
drive gets also impaired for rotating islands, that are smaller than the "polarization threshold":
the rotation causes a time varying field that in turn leads to a stabilizing modification of
banana orbits.
A corrected Rutherford equation that respects both thresholds reads as:

τR
rs

dw
dt = rs∆′(W ) +

√
r3
s

R0

Lq
Lp

βp
W

(
csatfGGJ

W 2

W 2
0 +W2

− cpol
ρ2
θ,i

W 2

)
(2.35)

Further mechanisms can play a role and modify the growth rate significantly, e.g. runaway
electrons during the non-linear phase significantly[34].

Stability regimes NTMs can grow even when ∆′(w) < 0 according to (2.35) A positive
growth rate in that case, however requires the occurrence of a seeding island, which is greater
than the small island thresholds. Seed islands are often caused by other MHD activities like
sawteeth. Therefore that mode is called being "metastable". The mode saturates with an
island width, at which the neoclassical instability term equals the classical stabilization term.
It is also possible that neoclassical destabilization is too weak for every island width and island
growth is fully suppressed. The mode is then called being "unconditionally stable". Since
increasing the plasma beta moves unconditionally stable modes into the metastable regime,
maximum reachable plasma pressure is limited.
Consequences for disruptions can be summarized as follows: if a small island is forced by

some arbitrary external effects in an equilibrium stable to classical tearing modes, it may grows
as a NTM. If it saturates at a width, where confinement degradation becomes significant and
stochastisation sets is, it can cause a disruption.

2.3. Influence of conducting structures
The perturbed flux excited at an rational surface extends beyond the plasma and also affects
the outer region: if the temporally changing perturbed magnetic field penetrates a wall, a
current of the same periodicity will be induced. The current in turn produces an opposite

23



2. Theoretical Background

directed magnetic field, that penetrates the plasma. The sum of both helical fields is therefore
reduced. Hence, the wall has a stabilizing effect and ∆′ is decreased.
To calculate the field strength at the wall, some approximations need to be applied[17]. We

assume, that the current density is negligible outside the rational surface. The z-component
of Ampere’s law expressed in terms of magnetic fluxes, ∆Ψ1 = −µ0jz, then reduces to to
∆Ψ1 = 0 for r > rs. In addition considering the circular cross-section, high aspect ratio
approximation, and appropriate boundary conditions we get the solution:

Ψ1(r) = Ψ̂1

(
rs
r

)−m
exp[i(mθ − n(φ− φ0))] for r > rs (2.36)

With the amplitude at the resonant surface Ψ̂1, which is not constant in time for mode growth,
and assuming the toroidal periodicity and allowing a phase shift φ0, which is in case of island
rotation not constant in time. In this assumption, a field reduces by ∝ r−m−1 outside the
resonant surface.
The reduced magnetic field the can than be approximated as, if a wall is ideally conducting,

i.e. its resistivity is given as ρw = 0:

Bw
r (r) ≈ Br(r)w.o.

(
a−

(
r

rw

)2m
)

(2.37)

with the distance of the wall to the magnetic axis rw and the minor radius a. Br(r)w.o. is the
perturbed field without conducting structures. Hence, if a wall would be indefinitely close to
the plasma, all perturbations vanish at the edge.
With increasing the resistivity, the stabilizing effect decreases and vanishes for ρw →∞.

2.4. Plasma rotation and mode locking
A plasma usually exhibits a toroidal and poloidal rotation. It is mainly the result of the sum of
diamagnetic drifts like given by (1.6) and a fluid velocity. The fluid velocity can be provoked
by an external torque, like coming from neutral beam injections, that mainly forces the toroidal
rotation. An additional contribution to poloidal rotation comes from E-cross-B drifts as given
by (1.4). The electric field points in radial direction and is a result of further neoclassical
effects. Therefore it is also called a "neoclassical E-cross-B drift". It is to note, that both
the diamagnetic drift and the neoclassical E-cross-B drift are proportional to ∇p. Due to the
incompressibility of the plasma, ∇ · v = 0, an angular rotating frequency ω can be defined.
As discussed in the last section, a growing mode will induce currents in a conducting wall.

The same applies for a rotating mode. For a finite resistivity these eddy currents will yield
j × B acting on the vessel by the interaction with magnetic field components that are not
in phase with the current. Due to Newton’s third law, a counterforce will hence act on the
vessel. Momentum transfer between plasma and machine occurs and the plasma reduces its
rotation, which is called mode locking. The acting forces are highly dependent on rotational
frequency and wall resistivity. A broad discussion is given in [57]. For the forces hold, that:

Fw ∝
ωτw

m2 + (ωτw)2 (2.38)
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where τw is the so resistive time of the wall. It can be approximated by τw = µ0/ρwbd/2 with
the wall resistivity ρw, minor radius of the vessel b and vessel thickness d. m is the poloidal
number of the considered mode.
(2.38) shows, that the forces reach a maximum for m/τw ≈ ω and locking appears the

fastest. In turn, for frequencies much higher or lower than this, no effect of the wall onto
rotation is expected. Interaction with the wall usually brings the plasma to frequencies of a
few Hz. The fully locking in turn is often the result of additional interaction with error fields.

2.5. Mode coupling and field stochastisation
The assume, that a (2/1) mode is the dominant instability in a tokamak, however so called
side band harmonics will be excited in two different ways by coupling.
Firstly, the background equilibrium field in a toroidal device exhibits a strong m = 1 compo-

nent and also higher m components with lower amplitudes. As a consequence, the perturbed
field of a (2/1) mode has also a strong m = 3 component, for instance. Te amplitude of that
component is only dependent on the m = 2 harmonic of the perturbation and the m = 1
harmonic of the equilibrium field. Since it is not localized in radial direction, it will also desta-
bilize a secondary (3/1) mode at the q = 3 surface. This is referred to as the (linear) coupling
due to toroidicity.[21] The amplitude of the background field only hardly changes with time,
so that the (3/1) island is expected to grow with the same rate as the (2/1) island. Also a
(4/1) mode can expected, which also the same growth rate as the (2/1) mode, but will be
significantly smaller due to the smaller amplitude of the m = 2 component of the background
field.
Secondly, the MHD equations contain non-linear term, such that mode coupling can occur

like it was described already for JOREK in a ballooning mode case[47]. The quadradic mode
coupling takes places between the modes among each other and yields modes of higher n.
Therefore, (2/1) and (3/1) may couple to yield modes of n = 2. This type of secondary
islands is not expected to grow with the same rate as the primary (2/1) mode, since their
amplitude is expected to grow in a way proportional to the product of the amplitudes of the
driving modes.
In a rotating plasma, the difference in the angular velocities between the respective flux

surfaces would lead to a shielding effect of the magnetic perturbations leading to a suppression
of the sidebands until the point where the perturbation is strong enough to reduce the rotational
shear to a value close to zero, at which the secondary islands would "penetrate". This is the
same mechanism as mode penetration caused by an external magnetic field like it has been
investigated in detail with JOREK.[54]

Stochastisation If two adjoining magnetic islands get large enough, so that they overlap,
magnetic flux surfaces get destroyed and a region between these islands is produced which is
referred to as the stochastic layer: the trajectories of field lines in this layer become chaotic
and it is not possible any more to define flux surfaces. The stochastisation sets in, if the
Chirikov-Criterion is fulfilled:[11],[86]

1 < σCh = (wm/n + wm±1/n)/2
|rm/n − rm±1/n|

= wm/n

(ms)−1
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With the magnetic shear s = 1
q

dq
dr . For 1 < σCh, the average island width is greater than their

distance, what implies overlapping.
The stochastisation can be quantified by a field line diffusion coefficient: as the field line

diffuse in radial direction, an appropriate averaging leads to an effect radial component δB.
From that it follows a definition by:

Dst = πR0

(
δBr

B0

)2

(2.39)

With major radius R0.
The heat transport across the stochastic layer may get enhanced by field line diffusion only if

the heat diffusion anisotropy χ‖/χ⊥ is great enough. Otherwise the effects of single islands on
radial heat transport as discussed before are dominating. Additionally heat transport caused
by stochastisation is given, if χ‖/χ⊥ > 107. [40, Section 8.1]

2.6. Diagnostic coils

Figure 6: Schematic sketch of diagnostic coils suitable for mode detection. A saddle coil in
green and an array of radial Mirnov coils to measure Br in blue. Poloidal Mirnov
coils for the measurement of Bθ are not shown and would lie in the horizontal plane.

The analysis of mode growth and structure is usually conducted using diagnostic coils placed
between plasma and vacuum vessel. In doing so, one makes use of the fact, that the effect of
the perturbed flux excited at an rational surface extends beyond the plasma and also affects
the outer regions: If a changing magnetic field penetrates diagnostic coils, measurable voltages
will be induced. These allow to measure mode dynamics and with a well positioned set of
diagnostic coils it is possible to reconstruct Ψ1(rs).
For the detection of MHD modes, Mirnov coils, a type of magnetic probes, and saddle

coils are available (see figure 6).[75] Due to their small spatial extent, Mirnov coils are used to
determine the toroidal and poloidal mode structure. They are aligned, such that they measure
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2. Theoretical Background

the individual components of the local perturbed magnetic field, Bθ, Bφ or Br. They can be
used for fast rotating modes with frequencies of up to a few MHz.
On the other hand, saddle coils respond better to slowly rotating modes or locked modes.

They give only the radial magnetic field averaged over a larger area. By knowing the mode
structure the mode amplitude can be extracted from that signal.

Physics of magnetic diagnostic The principle is based on Faradays law, which is given for
a static coil with only one turn by

Uind = Ψ̇coil = d

dt

∫
Σ
~B(t, ~n) · d~S (2.40)

where Σ is the area enclosed by the coil.
To link the perturbed flux at the rational surface Ψ1(rs) and the pertubed flux at the i-th

diagnostic coil of a set Ψ1(rci)3 which determines ~B(t, ~n) in (2.40), the same assumption as
in 2.3 are applied. We recap the solution:

Ψ1(r) = Ψ̂1

(
rs
r

)−m
exp[i(mθ − n(φ− φ0))] for r > rs (2.41)

With the amplitude at the resonant surface Ψ̂1, which is not constant in time for mode growth,
and assuming the toroidal periodicity and allowing a phase shift φ0, which is in case of island
rotation not constant in time.
Evaluating the magnetic fields (recall equations (2.24)) at rci gives:

Bθ/r(rci , θ, φ, t) = B̂θ/r(t)
(rci/rs)m+1 cos(mθ − n(φ− φ0(t))) (2.42)

For Mirnov coils, ~B varies only insignificantly in radial and poloidal direction within Σ. Fur-
ther, they are aligned in such a way, that they only measure the radial or poloidal components
of the field, B · dS = Bθ or B · dS = Br.
This leads to the expressions for the i-th Mirnov coil on the midplane, i.e. θci = 0:

Ii ≡ Iind,coil(rci , φci , t) = Σcoil

Rcoil

1
(rci/rs)m+1

d
dtB̂θ/r(t) cos(n(φci − φ0(t))) (2.43)

= Ci cos(n(φci − φ0)) 1
rm+1
ci

(2.44)

Where Ci is given both by Ψ̇1(rs) and the coil geometry and coil resistivity Rcoil.
Equation (2.44) gives a relation between Ii and n. For a set of measured currents {Ii},

that equation can be fitted with n and Ci as fitting parameters to identify the toroidal mode
number. By setting Mirnov coils on different poloidal positions, the poloidal mode number
can be identified in a similar way. The magnetic fields can be calculated by time integration
of (2.43):
3where the centre coordinates of each coil are defined as (rci

, θci
, φci

)
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Bθ/r(rci , 0, φci , tf) = Rcoil

Σcoil

∫ tf

0
Iind,coildt (2.45)

⇔ B̂θ/r(tf) = Rcoil

Σcoil

cos(n(φci − φ0(tf)))
(rs/rci)m+1

∫ tf

0
Iind,coildt (2.46)
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3. Simulation of MHD stabilities

3.1. Non-linear MHD code JOREK
JOREK is a non-linear code for solving extended MHD in realistic X-point plasma geometry
including the separatrix and scrape-off layer. It has been primarily developed for simulations of
Edge Localized Modes[44] but is nowadays also applied for a wide range of disruption-related
simulations (see 1.5).

Reduced MHD In JOREK the so called reduced MHD equations[77],[76] derived from the
extended MHD as given in 1.4 are implemented. The reduced MHD is usually applicable for
the tokamak geometry and relies on two basic assumptions. The toroidal magnetic field is
much stronger than the poloidal field and the toroidal field is constant over time:

Bφ � Bθ (3.1)
dBφ

dt = 0 (3.2)

This enables the description of the toroidal magnetic field through a scalar potential:

~B = Bφ +Bθ

= F0∇φ+∇Ψ×∇φ (3.3)

with the constant F0 ≡ R0Bφ0 and ∇φ ≡ eφ/R.
The simulation variables toroidal vorticity ω, toroidal current density j and electric potential

u are then defined as:

~v = ~v‖B +R2∇φ×∇u (3.4)
ω = ∇φ · (∇× v⊥) = ∇2

⊥u (3.5)
j = ∇∗Ψ (3.6)

The set of reduced MHD equations which are implemented in JOREK is given by:

∂ρ

∂t
+∇(ρ~v) = ∇ · (D∇ρ) + Sρ (3.7)

R∇ ·
(
R2ρ∇⊥

(
∂u

∂t

))
= [R4ρω, u]− 1

2
[
R2ρ,R4|∇⊥u|2

]
− [R2, p2] + [Ψ, j]− F0

R

∂j

∂φ
+ µ⊥R∇2ω

(3.8)

ρF 2
0
dv‖
dt

= F0
∂p

∂φ
−R[Ψ, p] + µ‖∇2v‖ (3.9)

∂Ψ
∂t

= R[Ψ, u] + ηj − F0
∂u

∂φ
(3.10)

ρ
∂T

∂t
= −ρ(~v · ∇T )T − (γ − 1)ρT∇ · ~v +∇ · (κ⊥∇⊥T + κ‖∇‖T ) + ST

(3.11)
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Ion and electron temperatures are assumed to be equal, so that Ti = Te = T/2. Sρ and ST
are additional, optional source terms.
For solving with JOREK, the set of equations is converted into the weak form. Detailed

discussions and derivations can be found in [44], [15] and [61].

3.1.1 Numerics used in JOREK
This section touches some important aspects of the features implemented in JOREK.

Poloidal discretization The poloidal plane is discretised using bi-cubic Bezier finite ele-
ments. The grid is flux surface aligned (see 3.1.1). Introducing local coordinates for each grid
element, 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1, a simulation variable is parametrized in the form of:

P (s, t) =
∑

i≤3,j≤3
PijBi(s)Bj(t) (3.12)

Here B are the third order Bernstein Polynomials. The 16 coefficients Pij of each physical
unknown are reduced so that continuity of the unknowns and their first derivatives within
across element boundaries is guaranteed. They are calculated for each time step. Also the
geometric variables R and Z are expressed by (3.12) which is called isoparametric mapping,
which maintains the scheme’s accuracy and allows for the flux alignment. Further details
about the Finite Elements implemented JOREK are given in [14].

Toroidal expansion For the toroidal expansion, a real Fourier series is applied. The basis
function of the zeroth harmonic equals 1. The nth harmonic (n > 0) is given by the pair of
basis functions cos(nφ) and sin(nφ). The harmonics to be included in a simulation have to
be predefined by input parameters.
Using a Fourier expansion is intuitive since it adopts the periodicity in toroidal direction

which is a fundamental property of the considered modes. To simulate a (2/1) mode it is
already sufficient to consider only the n = 0 and n = 1 mode. However in experiments
mode coupling is often observed so that a (2/1) mode may excite modes of higher order. To
reproduce this behaviour the non-linear interaction between the harmonics is a crucial property
of JOREK.

Time stepping Time evolution is performed using the fully implicit Crank-Nicolson scheme.[37]
The advantage of implicit time schemes is that the time steps can be chosen independently of
the grid size. Instead, time steps in order of the physical time scales of interest are allowed,
which are usually anywhere between one and 10.000 Alfven times.
At each step the matrix representation of the weak form of the reduced MHD equations

introduced above is constructed and inverted with the iterative scheme GMRES and using a
physics based preconditioning involving the PaStiX[36] sparse matrix library.

Equilibrium calculation An initial poloidal grid is given by input parameters. For the flux
alignment in the first simulation step the equilbirium flux surfaces are calculated based on the
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Grad-Shafranov-equation:[72]

∇ · 1
R2

0
∇Ψ = −p′ − FF ′

R2
0
, (3.13)

where p is the pressure, F = RBθ and the derivatives (′) are with respect to the poloidal
flux Ψ used as a radial coordinate. The flux alignment yields computational advantages due
to strongly differing magnitudes of parallel and perpendicular gradients.
The profiles of p′ and FF ′ have to be provided as input files. Also, Ψ at the boundary of the

computational domain needs to be given. All three inputs can be obtained from equilibrium
reconstructions, performed by codes like CLISTE[60] based on measurements of a specific
experiment.

3.1.2 Implemented Models and Extensions
Due to a broad range of applications with varying complexities, different physics models and
extensions are available in JOREK. Choosing the right model makes a run more time efficient.
Only the models relevant for this thesis are shortly introduced below:

Simple Physics model The simplest model describes the reduced MHD (3.7)- (3.11) only.
In addition, v‖ = 0 so that only six physical unknowns are simulated: ψ, u, j, ω, ρ and T .

Model with parallel flows An extensions of the previous model is available by parallel
plasma flows. The parallel velocity v‖ becomes the seventh simulation variable and is given
initially by a velocity profile. In addition, the diamagnetic drift has been implemented. The
diamagnetic frequency can be scaled for theoretical studies, so that it does not necessarily
need to match with the theoretical assumption of diamagnetic drift (1.6). Also, the evolution
of the bootstrap current is considered. To this end the initial bootstrap current jBS(0) is
calculated from the equilibrium pressure profile by the Sauter-formula.[69] It is subtracted
from the equilibrium current profile: jind ≡ j(0) − jBS(0). For each time step jBS(t) is
calculated from the evolving pressure profiles and the entire current profile is therefore given
by j(t) = jind + jBS(t).

Free boundary extension STARWALL By default, JOREK uses Dirichlet conditions at the
boundary of the computational domain for the magnetic flux and current. This corresponds
to an ideally conducting wall placed on the boundary of the computational domain, which
suppresses all perturbations there.
To describe the interaction of the plasma with a more realistic shaped respective re-

sistive wall, but also for the implementation of active and passive coils an extension of
JOREK is needed. This is enabled by the coupling of JOREK with the resistive wall code
STARWALL[38],[59] . The wall is considered as a "thin wall", i.e. the current distribution that
flows in conducting structures is described by an indefinitely thin current sheet. The thin wall
is represented by triangles and its wall resistivity is set by an input parameter. The triangles
can be calculated from a Fourier decomposition of the wall, which is given as input also. For
each time step, the wall current is calculated and its back reaction onto the plasma, which is
the modification of ψ at the boundary of JOREK’s computational domain.

31



3. Simulation of MHD stabilities

3.2. Diagnostic tools
The analysis of the plasma dynamics requires an evaluation of the simulation variables: for
each time step, a series of macroscopic variables is calculated simultaneously. This includes
the calculation of the total toroidal plasma current Ip or the magnetic energies Emag,i for each
harmonic. The latter is yielded by an integration of the local magnetic energy density, which
is proportional to the square of the local magnetic field, given by the simulation variables.
Hence it gives general information about the amplitudes and growth rates of modes with the
regarding toroidal number.
Post-processing enables a more detailed analysis: physical variables like magnetic field com-

ponents or electron velocities can be calculated on particular flux surfaces, averaged in poloidal
and toroidal direction, or on the midplane, averaged in toroidal direction. It is also possible to
perform a two dimensional Fourier analysis in straight field line coordinates[30]. For a plasma
that has developed a (2/1) mode, the (m = 2, n = 1) component of ψ read out at ΨN(q = 2)
corresponds to the helical perturbed flux Ψ1 at the rational surface then.
Poincare plots[18] enable to visualize the field line structure: Starting from a poloidal plane,

several field lines are traced for many toroidal turns an their position is marked every time
they cut the plane at which they were started. This way, field lines starting from a flux surface
map out the respective flux surfaces - both from the unperturbed plasma or from an island.
In contrary, the mapping will proceed rather chaotic if the lines lie in a stochastic layer. The
Poincare plot can be written out in R− Z as well as in ΨN − θ-coordinates.
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Part II.
Results
4. Virtual diagnostic signals of a (2/1) locked mode
In order to compare simulation data directly to experiments, virtual diagnostic coils are needed.
JOREK has the capability to simulate virtual diagnostic coils using the free boundary extension
STARWALL. For this work, a set of diagnostic coils was set up such that virtual signals can be
written out in response to the MHD activity. The different set-ups implemented for this series
of simulations are given in 4.2. In the following sections we will validate if the behaviour of
the coil signals that is predicted by the formulas derived in 2.6 for the vacuum field in simple
geometry also holds for a realistic case.
In this first application of virtual diagnostic coils, we consider a classical born locked mode

that gets excited by an artificial heat sink mimicking the situation caused by massive material
injection for disruption mitigation (see 4.1). The locking mechanism itself is not of interest in
this section, but is studied in section 6.

4.1. Plasma setup
The simulations are based on a typical ASDEX Upgrade L-mode equilibrium with q0 = 1.12
and q95 = 4.67. The q = 2 rational surface lies at ΨN ≈ 0.54 and the magnetic axis is located
at (Raxis, Zaxis) = (1.66 m, 0.075 m). The (2/1) mode is linearly stable in this equilibrium
and gets excited by an artificial heat perturbation as explained in the next section. The
simple physics model implemented in JOREK (see 3.1.2, Simple Physics model) is sufficient
here, since the main purpose of this section is to investigate signal diagnostic coils applied
to a locked mode. In order to investigate the influence of non-linear coupling with higher
harmonics on the MHD modes and coil signals, simulations including toroidal harmonics from
n = 0, 1 up to n = 0, ..., 5 are carried out.
Source terms and diffusivities were set up such that density and temperature profiles are

stationary in the absence of modes on the considered timescales. Further scans have been
performed to check the convergence of the results with the grid resolution. For this simple
case of only one tearing mode in a plasma that is stable against any other modes, a low spatial
resolution, compared to similar simulations, of the poloidal grid is sufficient to describe the
dynamics: the grid is constructed from 40 nodes in the radial directions times 50 points in the
poloidal direction.

4.1.1 Triggering a born-locked mode
Due to the strong dependency of resistivity on temperature, η ∝ T 3/2[12], a temperature
perturbation will be followed by a current perturbation. On one hand, this can lead to axisym-
metric modification of current distribution. If this implies a steepening of current gradient
around a rational surface, a tearing mode may get destabilized. On the other hand a non-
axisymmetric, periodic perturbation can also enforce island growth. Thus, by introducing a
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non-rotating temperature perturbation, a non-rotating mode structure is induced, where the
O-Point is aligned with the perturbation. This triggering is comparable to massive material
injection used for disruption mitigation[56].
Therefore an additional term SHS describing a "thermal energy sink" was added to the

temperature source term ST in JOREK. The radially, poloidally and toroidally localized heat
sink is placed at the q = 2 surface on the low field side. Intensity is time varying with a
maximum after t = 2000 τA4 according to the temporal dependency exp [−(t−2000)2/15002].

4.2. Coil setup

Figure 7: Left: Model of the saddle coils. Right: Positions of the Mirnov coils. Toroidal subset
(see 4.4.1) at R = 2.222 m is marked in green; Radial subset (see 4.4.2) at φ = 0
is marked in blue. Below: Horizontal Mirnov coils for the measurement of Bθ. Far
below: Vertical Mirnov coils for the measurement of Br.

Four saddle loop coils measuring the radial magnetic field are installed on the high field
side of ASDEX Upgrade centred around the midplane at R = 1.0845 m next to each other,
each spanning a toroidal angle of ∆φ = π/2 and having a height of ∆Z = 452 mm. The
same coils are implemented with STARWALL as virtual diagnostic coils. Two further saddle
coils at the same radial position R have been added, such that all toroidal angles are covered.
In addition virtual coils with different distance to the plasma, i.e. from R = 1.0445 m to
R = 0.7245 m on high field side, and further coils on the low field side, i.e. from R = 2.142 m

4All times within this thesis are normalized with respect to Alfven time scale. Multiplying t by τA = √µ0ρ0
yields the time in seconds, where ρ0 is the central mass density. For these simulations τA ≈ 3 · 10−7 s.
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to R = 2.502 m, are considered (see figure 7). They are centred around the Z = 0-plane and
therefore the center is below the magnetic axis (Zaxis = 0.075 m).
To analyse the toroidal dependency of the signal in more detail, a set of horizontally and a

set of vertically aligned Mirnov coils each with a diameter of 2 cm are implemented in addition
at ten toroidal positions and at the same radial position as the saddle coils. They are adjusted
in such a way that one set can measure Br and the other set measures Bθ.
This broad set of 480 virtual diagnostic coils enables to investigate radial and toroidal depen-

dency of measured signals. Therefore they can be compared with the theoretical derivations for
a cylindrical, large aspect ratio geometry given in 2.6. The resistivity of all coils has been set
to very high values, so that magnetic fields driven by Icoil are negligible relative to equilibrium
or tearing mode fields and back reaction to the plasma is excluded.

4.3. Evolution of the plasma

(a) (b)

Figure 8: (a) Magnetic energy of the first harmonic for some runs with different number of
harmonics. Including at least n = 0, ..., 2 is required for convergent results. The
n = 0, 1 simulations ends with a numerical instability at t = 8400 τA. (b) Magnetic
energies of all harmonics of the n = 0, ..., 5 simulation. Apparently the first harmonic
is dominating.

Excitation of the tearing mode promptly sets in within the first time steps, since SHS(t = 0)
already has a significant amplitude. This results in a monotonously increasing magnetic energy
of the first harmonic, Emag,1, in all simulations. In the n = 0, 1, 2 simulation and at t = 4000 τA
that energy reaches 1 · 10−9, while the amplitude of cooling sources drops below 1% of its
maximum amplitude at t = 2000 τA. The energy growth rate decreases later on, so that the
energy reaches a plateau of ≈ 1.6 · 10−9 only at t ≈ 6000 τA. At that time point an island
structure is visible with a width of 25 mm (5% of minor radius) on the low field side. As
expected, the O-Point on low field side is exactly centred around the position of the cooling
source (see figure 9). During the mode growth q0 drops to a value slightly below 1 whereby
the q = 2 surface moves outwards by ∆Ψn ≈ 0.03, which is around half island width on the
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low field side. In the last sequence, for t > 8000 τA it can be observed that the islands width
decreases slowly.
Taking more than the first two harmonics into account shows a strong convergence, thus

the time trace of Emag,1 does not change largely. In contrary the simulation with only n = 0, 1
is under resolved, so that it exhibits energies two order of magnitude higher and develops
significant numerical instabilities in the centre after t = 8000 τA, causing it to diverge.
Additional modes of higher mode numbers develops slightly, what could be explained both

by weakly mode coupling but also by helical currents on other rational surfaces that were also
induced by the heat sink. Comparing island widths and mode amplitudes, which are extracted
using a Fourier Transformation (see also 4.4.3) show, that the (2/1) still remains to be the
dominant mode.
In the following we will study the virtual coil signals caused by this MHD activity.

(a) (b)

Figure 9: (a) Current density distribution j of the first harmonic for t = 6000 τA. (b) Poincare
plot showing the (2/1) island at ΨN ≈ 0.56 at the same time. Other modes are
only weakly developed, since mode coupling is limited at this (2/1) mode amplitude.
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4.4. Analysis of the coil signals

Figure 10: Time trace of the saddle coils on the high field side at R = 1.0845 m from the
n = 0, ...5-simulation. The labels indicate the toroidal angle each coil covers.

For each coil, the time trace of the measured current Icoil,i are documented. The signal
amplitude, which are a proxy for the islands growth rate, vary strongly by the toroidal position,
as can be seen in figure 10. All time traces for the coils of the simulations with at least
n = 0, 1, 2 exhibit a local maximum of the absolute value after around t = (3700 ± 200) τA,
the exact time point varies for each coil angle or coil setup. After reaching the maximum, the
signal amplitude decreases, what is in agreement with a slowing down of energy and island
growth shown before. After t ≈ 8000 signal signs change, indicating the observed damping of
the mode.

4.4.1 Toroidal dependency
The question arises how well the wave number n of the mode and its phase shift in toroidal
direction can be identified from the diagnostic coils. Therefore we choose from one set of coils
those coils which are at a specific radial position and analyse the signal at a specific timepoint
t. We call this selection a "toroidal subset" as it is marked in figure 7. Therefore we have 30
of these kind of subsets in total.
For the investigation we simplify Ci/rm+1

ci
in (2.43) by C†j with 0 < j ≤ 30 for each toroidal

subset. Then using modified (2.43) as a fitting function

Ii = C†j sin(nj(φi − φ0,j)), (4.1)

all nj and φ0,j are determined using a non-linear least-square fit[66]. The time point is set
to t = 6000 τA at which the signals have already grown to a significant amplitude but do not
exhibit anomalies due to numerical instabilities.
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(a) High field side (b) Low field side

Figure 11: Saddle coils at the position of R = 1.0045 m

(a) High field side (b) Low field side

Figure 12: Mirnov coils at the position of R = 1.0045 m

If (4.1) is fitted to mode signal from the n = 0, 1-simulation, it shows clearly a periodicity
of nj = 1, which is expected, since that simulation only considers the first harmonics, cos(φ)
and sin(φ) in the toroidal expansion. The periodicity becomes non-trivial by including higher
harmonics. Applying the fit to any of the other simulation shows a good agreement still. The
relative error between measured points and the optimized function is only about up to 1%5

which is tolerable. This implies that side modes with higher mode numbers do not perturb
the signal too strongly and the periodic structure of a n = 1 mode clearly dominates.
Since the thermal sink is placed at the position φ = 0 one would expect the maximum

of Bθ respective Br = 0 at this position, what would imply no phase shift for the signal of
vertical Mirnov coils and a phase shift of π/2 for the horizontal ones. However all subsets
at high field side exhibit a positive phase shift of about (0.08 ± 0.01)π, while the signals on
low field side lag behind with −(0.14 ± 0.02)π. This is a result of the displacement of the
5Error defined by ∆ ≡ (n−1∑n

i |yi/f(xi)|)− 1
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coils of 0.075 m relative to the magnetic axis. Therefore the smallest distance between coils
and an O-point is not reached at φ = 0 exactly. With increasing φ the O-point on high field
side moves "downwards" on the poloidal plane and reaches the minimal distance to the coils
at around φ = 0.08π. The reverse phenomenon applies for the low field side. It should be a
result of the toroidicty that the additional phase shift is greater on the high field side than on
the low field side.
This misalignment however also implies that the horizontal respective vertical Mirnov coils

will also measure small amount of Bθ respective Br, which decreases with increasing distance
to the plasma. This might influence the radial behaviour of the signal which is analysed in the
next section.

4.4.2 Radial Decay
It is of interest how well the radial dependency derived for a simple geometry in chapter 2.6
fits for a realistic case. In case of sufficient agreement, the mode amplitude can easily be
reconstructed from the measured coil signal. To this end it is analysed in the following if the
measured signals decay like r−m−1.
We investigate the radial dependency for each toroidal position and field side, i.e. for

each "radial subset" (see figure 7) separately. We define Ci sin(n(φi − φ0)) in (2.43) as C†j ,
0 < j ≤ 48 for each subset of Mirnov coils. For saddle coils the term is replaced by C†jR.
The multiplication with R takes into account that Σsaddlecoil = π/2R∆Z ∝ R . Therefore C†i
remains independent R. The minor radius can be expressed as rc,i = Ri−Raxis since the coils
are centred around midplane. For a fixed time point t = 4000 τA, we take the signal of each
coil from a subset. Then using modified (2.43) as fitting functions,

Ii = C†j
1

(Ri −Raxis)mj+1 for Mirnov coils

Ii = C†j
R

(Ri −Raxis)mj+1 for saddle coils

we optimize to find expressions for Cj setting mj = m = 2 in the first step using a non-
linear least-square fit. In the second step we optimize for mj and Cj simultaneously to check
if the signals decrease with a power of r that is systematically differing from −(m+ 1). This
is carried out for the coil signals of all simulations separately.
For some subsets the mode amplitudes of coils close to the plasma deviates strongly from

the r−m−1-behaviour (see figure 13,14,15). This is the case, when the coils are unrealistically
close to the plasma. A higher resolution of the coils discretized by planar triangles would be
needed to resolve this numerical artefact. Therefore the corresponding coils are excluded from
the fitting.
The quality of the fits varies only weakly with the number of harmonics in the simulation.

That means that the deviations discussed here, are observed in all simulations in a very similar
manner. Instead the toroidal position, but also the type of coils has a much bigger impact. In
summary the signal agree with the first by ∆ ≈ 2% if it is taken by Mirnov coils at a position
where the amplitude is the strongest. This is the case for horizontal Mirnov coils at φ ≈ π/8
and high field side or vertical Mirnov coils at φ ≈ 3π/8 (see figure 12). The good agreement
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4. Virtual diagnostic signals of a (2/1) locked mode

(a) High field side (b) Low field side

Figure 13: Saddle coils at the position of 0 < φ < π/2

(a) High field side (b) Low field side

Figure 14: Mirnov coils measuring Br at the position of φ = 0

(a) High field side (b) Low field side

Figure 15: Mirnov coils measuring Bθ at the position of φ = 0

holds for horizontal coils also at φ = 0, where the amplitude is still sufficient high (see figure
15).
For the saddle coils with high amplitude a deviation of around 5% is identified.
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4. Virtual diagnostic signals of a (2/1) locked mode

By fitting mj also, the quality of the fits improves in nearly all cases and the deviation
is below < 0.2%. Yielded mj are in a range between 1.0 and 3.0, a clear trend between
coil position and mj is not identifiable however. As an effect of toroidicity and shaping the
magnetic island on low field side is significantly bigger in direction of θ (see figure 9). This
could imply mj < 2 for low field side and mj for high field side. Given the fact that there is
also no correlation between field side and mj (e.g mj < 1 for all saddle coils) the observed
deviations are likely not to be explicable as geometric effects only.
As explained before the magnetic field perpendicular to a coil is not exactly defined by only

one component, Br or Bθ. Instead, a small amount of the other component is added and that
amount is dependent of the radial coil position. This perturbation may lead to the deviation
of signals from the theoretical decay with r−(m+1). At those toroidal positions where one
component reaches a maximum, the other component vanishes and hence the perturbation
also. This is in agreement with the observation that the fit yields smallest deviations at these
positions.

4.4.3 Comparison with the magnetic flux at the rational surface

(a) High field side (b) Low field side

Figure 16: Saddle coils. For a better comparison Ψ̃1(rc) has been scaled so that max Ψ1(rs) =
max Ψ̃1(rc)

By a two dimensional Fourier analysis (see 3.2) the helical perturbed flux Ψ1(rs) is deter-
mined. Moreover Ψ1(rc) can be estimated except for a constant by the integration of the
measured current: Ψ1(rc) ∝

∫ t
0 Ii(t′)dt′ ≡ Ψ̃1(rc).

Regarding the Fourier analysis Ψ1(rs) grows rapidly between t ≈ 1000 and t ≈ 5000 and
reaches a maximum value at about t ≈ 8000. This is in good agreement with the growth of
island width described before. The integrated signals of the coils on high field side match well
(see figure 16 for saddle coils). During the rapid growth the signals exhibit a slightly delay
of δt < 300, while it is about δt < 1000 on the low field side. The delay can be explained
qualitatively by the shielding effect the remaining plasma outside rs has.
A similar behaviour is detected by the Mirnov coils, albeit the lagging is only δt < 100

during the rapid growth. There is a tendency, independent from the type of coils, that the
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signal on low field side is less delayed than on low field side.

4.5. Conclusions
In this sequence of simulations the generation of diagnostic coil signals for the detection of
tearing modes using a simple reduced MHD model and realistic geometry has been realized.
Both saddle and Mirnov coils were implemented and their appropriateness for analysing a (2/1)
mode were compared. The signals were examined for their consistency and compared with
theoretical expectations.
Toroidal periodicity of the coil signals corresponds well to the periodicity of the (2/1).

This means by using a sufficient number of Mirnov coils the mode and its phase shift can
be identified easily. It was also checked how well the radial decay of the amplitude can be
predicted. At positions where Br respective Bθ reaches its maximum, the decay matches well
with expected prediction for simple geometries. It is important to keep in mind the delay
between mode growth and coil signal due to a skin effect of the outer plasma. This needs
to be quantified in further simulations correctly especially if coils are used for investigation
of a rotating mode: The inverse of the delay gives an upper limit for observable rotation
frequencies.
Another effect which is of possible relevance is the variation of the position of the rational

surface. In this simulation, it changed only slightly, as it moved outwards, i.e. about 2 cm
on the low field side. That would imply an increase in the coil signal due to the r−(m+1)

dependence, and could be wrongly interpreted as a a mode growth. This effect seemed not to
be significant here. Future studies should also investigate this in more detail.
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5. Simulation of a partial thermal quench

5. Simulation of a partial thermal quench
The dynamics of a (2/1) locked mode that leads to a thermal quench are investigated in the
following using a more realistic physics model and plasma setup. An equilibrium, which is
unstable against the mode is considered. The current density profile of an ASDEX Upgrade
equilibrium was modified for this purpose to destabilize the mode, i.e. ∆′ > 0 is fulfilled. The
focus lies on the linear development and evolution of the stochastic layer and its influence onto
the temperature profile. Wall setups with different resistivities and geometries are considered.
It shall be analysed how the mode coupling introduced in 2.5 behaves in a realistic toroidal

system: it is expected to observe the coupling of poloidal mode numbers due to toroidicity
effects soon after the onset of the (2/1) mode and the quadratic mode coupling with modes
of higher toroidal harmonics in the later course. It is analysed if the time points of island
overlapping corresponds to the onset of stochasticity, as predicted by the Chirikov criterion.
The conducting structure has a stabilizing effect onto mode growth and saturation ampli-

tudes (see 2.3). On the one hand a decrease of the growth rate of the (2/1) mode and hence
its side bands is expected. In addition the wall could also have a direct influence on the side
bands amplitudes, especially if they lie much closer to the wall than the (2/1) mode. As an
another effect, the conducting wall may have a suppressing effect on the stochastisation in
particular at the plasma edge. Even at the same amplitude of the (2/1) mode, stochastisation
at the plasma edge is expected to reduce for decreasing resistivity of a wall close to the plasma.
Next, it will be analysed how the occurrence of modes and stochastisation will degrade energy

confinement. For large islands of a widths some multiples of the critical island width regarding
Fitzpatrick, a flattening of the temperature profile is expected, like discussed in Section 2.2.2.
Based on the simulation it will be investigated, which modes have a significant influence hereby.
Besides these direct island effects, also stochastisation is expected to contribute to the radial
transport for high heat diffusion anisotropies.
In light of disruption prediction, many attempts have been made over the years to find an

empirical estimate for the (2/1) amplitude observed at the onset of a thermal quench. One
common threshold is referred as the deVries-scaling law[85]. To discuss its validity, it will be
applied to these simulations in the end of the chapter and further dependencies on geometry
neglected in this scaling are discussed.
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5.1. Plasma and wall setup
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Figure 17: Blue line: Poloidal cross section of the vacuum vessel of ASDEX Upgrade as used
for this simulations. Green line: Boundary of the computational domain and ideal wall of
the simulation with fixed boundary conditions. Brown line: Separatrix. Orange line: Cross
section of the q = 2-surface. Figure 18: Q-profile with q0 = 1.05 and q95 = 4.35.

A similiar equilibrium like set up in section 4 is considered. The q = 2-surface is given at
ΨN = 0.65 here. The slight shift is a result of an adjustment of Bφ to avoid having a q = 1
rational surface in the plasma. The current gradient between ΨN ≈ 0.55 and ΨN ≈ 0.75 is
increased to destabilize the (2/1) mode. This also flattens the q-profile around the resonant
surface, which remains to increase monotonously still (see figure 18). The plasma is rather
cold with an electron temperature of 4 keV in the core and 0.6 keV at the q = 2-surface.
Simulations are carried out with four different boundary configurations. For the first simu-

lation, fixed boundary conditions are applied, i.e. an ideal wall is placed on the border of the
computational domain (green curve in figure 17).
The further simulations make use of STARWALL to represent the vacuum vessel of ASDEX

Upgrade (blue curve in figure 17): the vacuum vessel consists of eight electrically insulated
octants, and is made of 4311 Cr-Ni Austenitic Stainless Steel.[84] The insulated gaps are
bypassed with metallic bellows. Further features like ports make its structure more complex.
Hence the resistance of the vacuum vessel is inhomogeneous and increased compared to a one-
piece vessel.[33] The representation used here by a thin closed wall with constant resistivity is
a strong simplification. Since only the general interaction of MHD modes with a conducting
wall are of interest here, without the aim of quantitatively comparing to experiments, this
problem is not further discussed for now.
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5. Simulation of a partial thermal quench

The vessel has an maximum wall thickness of d = 15 mm and a toroidal resistivity of
R = 0.28 mΩ. It has an approximate major radius, averaged over the outer and inner radius
of the vessel, of RM = 1.75 m and the poloidal cross section has an area of about A = 0.1 m2.
This yields a resistivity of ρw = RA/(RM2π) = 2.6 ·10−6Ωm. The 4311 Steel has a resistivity
of around 1 ·10−6Ωm for usual operating temperatures. The assumption of a higher resistivity
as for the pure material is reasonable due to the structure of the vessel.
For the second simulation, this realistic resistivity is set and the ASDEX Upgrade like vessel

as depicted in figure is implemented. The resistivity is increased or decreased by a factor of
106 in the third or fourth simulations, respectively to study the ideal vacuum vessel and the
no-wall limit.
The simulations are carried out with the physics model including parallel velocity, see 3.1.2.

This model also consistently describes the evolution of the bootstrap current following the
kinetic profiles, such that the neoclassical drive of the island is accounted for. To yield
virtually locked modes from the beginning, the toroidal rotation, E-cross-B background drifts
and diamagnetic drifts are set to zero. The parallel heat conductivity scales with ∝ T 5/2

e and
is set, such that it matches the theoretical Spitzer-Härm conductivity at the rational surface,
χ‖(ΨN = 0.65) = 1.22 · 10−9 m2/s. (with Te = 650 eV and ne = 1.33 · 1019 m−3 at the
rational surface). To allow for coupling with high order modes, the simulations are carried out
with the first five toroidal harmonics, regarding the observations in the last chapter.
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5.2. Analysis of the plasma

(a) (b)

Figure 19: (a) Time traces of the magnetic energy of the first harmonic (solid line) and the sum
of the magnetic energies of all the first five harmonics (dashed line) for different wall
configurations. (b) The magnetic energies for the first five harmonics separately
for simulation with realistic vacuum vessel.

As expected, the (2/1) mode starts growing soon after initialising each simulation and clearly
dominates modes of higher order during its linear phase. The different boundary conditions
influence the mode growth significantly so that the growth rate of the first harmonic in the run
with fixed boundary is about 20% smaller compared the no-wall limit and saturates later(see
figure 19 (a)). The differences between the runs with ASDEX Upgrade like vessel are substan-
tially smaller: the growth rate for realistic vacuum vessel is just 4% smaller. The difference
growth rates also impact the saturated energy amplitudes, so that maxEmag,1 is one order of
magnitude lower for the run with fixed boundary compared to the other runs. With entering
the non-linear phase between t = 27000 τA to t = 35000 τA, modes of higher order become
significant for all runs. The sum of the n = 2, ..., 5 magnetic energies gets comparable to
Emag,1. In the further course Emag,1 stops growing in all runs. However modes of higher order
continue to grow, so that Emag,sum reaches a maximum, when Emag,1 has already decreased
by around 20 % in each run. Modes with n = 2 reach a magnetic energy in the same order of
magnitude as the n = 1-modes (see figure 19 (b)).
The current density profile rearranges in the stochastic region, but is kept constant at the

magnetic axis and the toroidal plasma current Ip, which is initially Ip = 0.988 MA varies less
than 2% until t = 70000 τA during each simulation. Only weak variations of the q-profile are
observable.
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5.2.1 Development of the Stochastisation

Figure 20: Time trace of the island widths for the run width realistic vacuum vessel. The
widths of all islands, which grow at least to 3% of the minor radius, respective get
clearly visible in the Poincare plots, are drawn.

Equation (2.28) gives an expression for the island width of a circular plasma and high aspect
ratio in terms of the perturbed magnetic flux. Based on this equation, the island widths for
this realistic plasma are calculated from:

W = 0.7 · 4Ψn,mq

Bθq′
(5.1)

All variables are extracted from the simulation and Ψn,m is given by a Fourier-Transformation
like introduced in 4.4.3. The prefactor 0.7 takes account of island compression due to toroidal
and shaping effects and is determined empirically by comparing the width predicted by (2.28)
for the (2/1) island and the actual width read out manually from Poincare plots at some time
points. A comparison of (5.1) with the island widths of further modes shows a good agreement
with deviations < 7% independent of time step or simulation. A similar approach has been
applied in [78].
By this, the time traces of island widths are calculated for each simulation. Island widths

for the run with realistic vacuum vessel are shown in figure 20. That simulation is discussed
in detail in the next paragraphs.
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At t = 25000 τA, the (2/1) island becomes visible agreeing with the fact that the linear phase
ends. Simultaneously, the (3/1) and (4/1) modes become visible (see figure 22, first). Due to
the steep gradient of q for ΨN > 0.8 (see figure 18), the rational surfaces q = 3, 4, 5 lie close to
each other rendering this region prone to stochastisation soon after the appearance of sideband
harmonics. Actually stochastisation gets visible at t = 30000, which is in agreement with island
overlapping as depicted in figure 20. At the same time, the non-linear coupling of modes of the
first harmonic, leads to the occurence of n = 2 modes. Due to the low mode number, the (3/2)
mode dominates here, agreeing with the predictions from the energy principle introduced in
2.2. Due to slight overlapping with (5/3) and (4/3) island, stochastisation also sets in around
ΨN = 0.4 after t = 32000 τA. The further growth of (5/2), (5/3), (3/2) and (4/3) modes
leads to a full stochastisation for ΨN > 0.3 after t = 40000. At that time the amplitudes
of n = 1 harmonics do not change significantly, in agreement with the evolution of Emag,1
respective Emag,sum. The (2/1) island saturates with a width of about W ≈ 10cm, that is
20% of the minor radius. Also, the (6/5) island gets visible, which is however not large enough
for any island overlapping. Therefore the plasma core remains not being stochastic, which is
characteristic for a "partial" thermal quench[78]. Stochastisation of the core would need the
presence of islands of the q = 1 surface in the plasma. In the further course, all modes start
shrinking and the stochastisation reduces. This may be caused by a flattening of the current
profile due to the cooling of the plasma, as discussed in more detail in section 5.2.3.
The observed mode growth rates match well with the findings of mode coupling as discussed

in section 2.5, as apparent from figure 21. For a quantiative comparison, the width growths
rates γw are calculated numerically for the linear phase by:

γw(ti) = ln [w(ti+1)− w(ti)]
ti+1 − ti

(5.2)

where ti is the time at the i-th simulation step and w(ti) the island width in meters.
This yields growth rates of γw,n=1 = 4.6 · 10−4 τ−1

A for all n = 1 islands, consistent of a
coupling of the various n = 1 islands via the toroidicity related structure of the background field
(see 2.5). γw,n=2 = 9.5·10−4 τ−1

A for all n = 2 islands and γw,n=3 = 14.6·10−4 τ−1
A for all n = 3

islands. They suggest a coupling of two n = 1 modes to destabilize the second harmonic, and
coupling of a n = 1 and n = 2 mode to destabilize the third harmonics. For the fifth harmonic,
likely to be a result of coupling of a n = 2 and n = 3 mode, has γw,n=5 = 22 · 10−4 τ−1

A at
t = 25000 τA, which shrinks to γw,n=5 = 10.2 · 10−4 τ−1

A at t = 29000 τA. The reason be that
the coupled modes are already in the non-linear phase at the time, therefore their growth rates
change. Indeed, the sum of γw,n=2 + γw,n=3 at t = 2900 τA is still equivalent to γw,n=5.
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Figure 21: Widths of the islands shown in figure 20 versus time. The various m for a given n
are coupled due to toroidicity effects. The higher n modes are driven by quadratic
mode coupling of the lower mode numbers leading to higher growths rates than for
the base mode.

5.2.2 Influence of the wall configuration on mode growth and stochasti-
sation

Figure 23: Poincareplot of the run with
realistic vacuum vessel at
timepoint t = 54000 τA.

An approximation for the influence of wall currents
on the mode growth is given by the comparison
of the distance between the wall and resonant sur-
face and the poloidal wave length of the mode.
The averaged minor radius of the q = 2-surface
is about r = 0.46 m. This implies for a mode of
m = 2 a wave length of λm=2 ≈ rπ ≈ 1.4 m.
The poloidally averaged distance between wall and
resonant surface is 20 cm for the simulation with
fixed boundary conditions, while it is around 80 cm
for the simulations with ASDEX Upgrade like vac-
uum vessel. Since the distances are smaller than
the wave length for each run, an influence of the
wall on the mode growth can be expected by this
approximation, which is confirmed by the observa-
tions described before. We assume, that the mag-
netic field generated by the wall currents decays
like a vacuum field, so that Bwall(r) ∝ (rw − r)−3.
Therefore the amplitude at the resonant surface
Bwall(rs) is already only about 2% in the run with
ideal vessel compared to the run with fixed bound-
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Figure 22: Poincareplots of the run with realistic vacuum vessel at timepoints t = 28000 τA,
t = 34000 τA, t = 42000 τA and t = 54000 τA.
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ary. Hence varying the resistivity in addition only
affects the plasma dynamics moderately. This is
in full agreement with the observations described
before.
A comparison of the island width evolution confirms that the influence is strongest at the

plasma edge: the (5/1), (4/1) and (3/1) islands saturate at widths of only 60% to 80% in the
simulation with fixed boundary compared to the one with realistic vessel. In contrast, the wall
configuration does not affect directly the maximum width of (3/2) island. Since the non-linear
phase of the (2/1) mode sets in with a delay of about 5000 τA for the fixed boundary compared
to the other runs, all other modes are affected and maximum islands widths are reached with
a delay between 5000 τA to 10000 τA.

(a) (b)

Figure 24: (a) Time traces of the field line diffusion coefficient Dst at q = 2-surface. (b)
Profile of Dst in the stochastic layer of the three runs with resistive wall. Each
profile has been taken at the time point, where Emag,sum = 3.2 · 10−5. The run
with fixed boundary is not shown as it does not reach that energy at any time.

The wall’s direct and indirect influence both on growth rates and island widths has a sig-
nificant impact on the stochastisation: to quantify the field stochastisation, The field line
stochastisation coefficient, introduced in (2.39) is calculated with respect to ΨN for each sim-
ulation. The temporal evolution of Dst(ΨN = 0.65) confirms the strong dependency of the
degree of stochastisation on wall geometry and resistivity (see figure 24): As mode growth
is clearly reduced in the first simulation, maximal Dst is reduced by 50% compared to the
cases with an ASDEX Upgrade like wall. In addition a dependency on the wall resistivity is
now clearly visible, as Dst(0.65) is 20% smaller for the ideal wall as for the no-wall limit. The
modification of Dst increases with reducing distance to the wall. Since the ideally conducting
wall on the border of the computational domain suppresses all perturbation, Dst(ΨN ≈ 1) is
actually forced to zero in the first simulation.
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5.2.3 Evolution of the temperature profile

Figure 25: Widths of the islands shown 20 relative to their critical island width wc for island
flattening.

When islands reach the critical island width wc, a flattening of the temperature profile
occurs at first around the O-Point and extends up to the X-Point for w & 4wc which leads
to an axial-symmetric flattening, as discussed in Section 2.2.2. Further, if the heat diffusion
anisotropy χ‖/χ⊥ is of order 108 or greater, also stochastisation has a significant effect onto
the temperature distribution. In the following the simulation with realistic vacuum vessel is
discussed.
The (2/1) island reaches wc at t = 27000 τA (see figure 25). For t = 30000 τA, during the

onset of the non-linear phase, it has already grown to a size of 3wc and a significant effect on
the temperature profile is already observable. This is in agreement with the intrinsic property
of a mode in its non-linear phase to modify the equilibrium parameters. The stochasticity is
not yet strongly developed (compare with figure 24). A maximum width of 4wc is reached
at t = 34000 τA. Secondly, the (3/2) island starts rapidly growing after t = 27000 τA and
reaches ≈ 3.5wc at t = 34000 τA. At that time point, also (4/1) and (5/2) are greater than
2wc.
The evolution of the temperature profile, averaged in poloidal and toroidal direction, is shown

in figure 26. The flattening effect of the (2/1) island becomes clearly visible in the beginning of
the non-linear phase, around ΨN = 0.65. As no stochastisation occurs at that time point, the
development of the temperature profile is only a result of the large island. At t = 34000 τA,
the influence of the (3/2) island, which now has reached a width of 3wc becomes visible.
Both flattened regions are still isolated from each other, as there exist non-destructed islands
flux surfaces between both islands and a temperature difference of ∆Te = 200 eV around
ΨN = 0.57 remains. The increased radial heat transport at the plasma edge, in particular due
to the (4/1) and (5/2) also leads to an increase of the temperature there. Since these islands
stay only at sizes of 2wc, a temperature gradient in the averaged temperature profile remains.
In the further course, the enhancement of the radial heat transport due to stochasticity

becomes relevant for ΨN < 0.85. Outside, the heat diffusion anisotropy is always smaller than
108. This implies that even for the distinct stochasticity of the plasma edge, a temperature
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gradient remains. Inside, the flattening enhances and the temperature difference around ΨN =
0.57 decreases. In the following, the island sizes reduce due to the dropping neoclassical
drive an the flattening of the current profile. The (2/1) is only expanded to ≈ 3wc at
t = 50000 τA. Yet, the temperature between in 0.25 < ΨN < 0.8 continues to drop. This
is now in particular the result of the additional heat transport due to the stochasticity. As
the temperature confinement is remarkably degraded, temperatures in the core ΨN < 0.2 also
starts dropping.

Figure 26: Temperature profile for the simulation with realistic vacuum vessel at different
timesteps. Compare with figure 22.

However, a strong reduction of the temperature only occurs outside ΨN = 0.3, which is
the approximate position of the inner margin of the (3/2) island (see figure 20). Outside
ΨN = 0.3, temperature is all below Te = 0.5 keV. It is likely, that the temperature will
further drop, if the simulation is continued. Due to that behaviour with relatively constant
core temperature, this can be called a "partial" thermal quench.
A similar course has recently been investigated in DIII-D studies of locked mode disruptions[78].

The temperature, quenching just after the development of great (2/1) and (2/3) locked modes
and reaching stochastisation in the outer plasma region, has been observed there experimen-
tally and has been qualitatively reproduced by NIMROD. In contrary to this work, the island
evolution has, however, not been investigated fully consistently in these simulation, which
starts from ad-hoc initialized islands. In DIII-D and other machines, partial thermal quenches
have often been observed as precursor events of "full" disruptions: Just after mode locking
and within a time frame of about 200 ms usually three to five partial thermal quenches were
observed, from which the plasma recovered. After that series of events, also the core tem-
perature dropped in a full disruption. These findings motivate to investigate deeper into the
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physics of partial thermal quenches to possibly improve disruption predictors.

5.2.4 Required mode amplitude to trigger a disruption

(a) (b)

Figure 27: Normalized perturbed field Br at the rational surface q = 2 measured on midplane
on high field side (HFS, blue) respective low field side (LFS, green). The amplitude
for triggering thermal quench regarding de Vries is drawn in purple. The dashed line
represents the lower limit of the confidence interval. (a) Simulation with realistic
wall. The amplitude on LFS reaches up to 2.7% and matches the scaling law within
the range of uncertainties, whereas it stays only at < 1% on HFS. (b) Simulation
with fixed boundary conditions.

In a recent paper by de Vries et al.[85], a threshold for the measured locked mode signal
reached at the disruption onset was formulated empirically. It was proposed, that this threshold
only scales with a limited number of macroscopic parameters. The data of magnetic diagnostics
on the low field side of JET from 250 shots, of ASDEX Upgrade (HFS) from 35 shots and of
COMPASS (both LFS and HFS) from 19 shots were consulted to derive the following scaling
law:

Bpred(rc) = (8.5± 2.5)I1.07±0.11
p a−1.1±0.11q−1.2±0.12

95 l1.2±0.12
i3 ρ−2.8±0.3

c (5.3)

With the predicted amplitude at the coil in mTBpred(rc), plasma current Ip in MA, minor radius
at the midplane a in m, internal inductance li3, and the normalized coil position ρc = rc/a.
The internal inductance is defined by:

li3 = 2V 〈B2
θ〉

µ2
0I

2
pR0

, V = πa22πR0 (5.4)

where B2
θ was averaged using the definition 〈...〉 =

∫ a
0 ...rdr2/a2.

By the assumption, that the mode signal is mainly caused by the growth of the (2/1)
mode the scaling law was transformed to find also an expression for the perturbed field at the
q = 2 surface, Bpred(rs). To do so, the previously introduced scaling by r−m−1 was applied.
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Bpred(rq), normalized to the poloidal magnetic plasma edge, averaged over both sides of the
midplane, Bθ(a), is then given by:

Bpred(rs)
Bθ(a) = (9± 1) · 10−3q0.85±0.18

95 l0.35±0.15
i3 (5.5)

It was shown that this fraction is usually around 3%. It is to notice that both scaling laws do
not distinguish between the side of the coils respective the resonant surface.
Equation (5.5) can be adapted to our runs, even though only a partial thermal quench has

been observed. This is reasonable: as discussed above the reason for not observing a full
stochastisation (hence a "full" thermal quench) is primarily caused by the absence of a (1/1)
mode. Since that mode would be close to the magnetic axis, it is far away from diagnostic
coils in comparison to the (2/1) mode. Therefore, the impact of a (1/1) mode onto the coil
signal would be limited. These assumptions match on measurements on DIII-D of partial and
full thermal quenches, where no strong differences between partial and full TQs were observed
in locked mode amplitudes[78],[80]. For a different simulation setup, which would allow for a
drop of q0 below unity, it would be very likely to trigger the (1/1).
Since the plasma current only varies in the order of 1% through all simulations and also the

q-profile does not evolve much, both li3 = 1.15 and q95 = 4.35 keep constant within uncer-
tainties. Both quantities lie within the ranges of the shots from ASDEX Upgrade considered
in [85] and a threshold of Bpred(rs)/Bθ = (3.3± 0.9) is predicted by (5.5).

Figure 28: The perturbed field Br measured at the midplane at t = 42000 τA in the simulation
with realistic vacuum vessel versus toroidal angle an major radius. The radial
positions of the q = 2-surface and the magnetic axis are marked by grey lines.

The evolution of Br strongly depends on the field side during all of our the simulations.
During the linear phase, the structure of Br is clearly dominated by an n = 1 periodicity. A
maximum is reached at ΨN = 0.27 on the high field side respective ΨN = 0.35 on the low
field side, which is smaller by one third on high field side. Also, Br decays more towards the
edge on high field side: hence it is usually three to four times smaller at ΨN(rs) = 0.65 on
high field side. At the end of the non-linear phase (t = 25000 τA for the second simulation),
B(rs,HFS) = 1.8 mT toroidally averaged and B(rs,LFS) = 5.0 mT. During the non-linear
phase, only B(rs,LFS) = 5.0 mT continues do grow significantly. Outside the q = 2-resonant
surface on the high field side, the Br rapidly vanishes to values of < 0.1 mT. In contrary
Br(ΨN = 0.95) has only reduced by half compared to the magnitude at the rational surface.
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Br on the midplane is shown in figure 28 at that time point during the non-linear phase, where
the stochastisation reaches its maximal expansion.
The distinct behaviour of Br on both sides motivates to treat them individually. For that

purpose, the poloidal background field Bθ(a) is determined as 460 mT on high field side and
350 mT on low field side and remains constant over time. Br is read out at the resonant
surface on each side and at those toroidal position, where it becomes maximal to determine
the amplitudes B̂r(rs). Since the plasma in the second to fourth simulation exhibits a slight
toroidal rotation with a frequency of ≈ 40 Hz during the non-linear phase, these toroidal
positions shift.
Within all simulation with ASDEX Upgrade like wall, the normalized Br at the low field side

reaches between 2.5% to 2.7% at around t = 42000 τA, i.e., when stochastisation becomes
the most expanded. Afterwards, it shrinks to a value of 2.4% (see figure 27). This means
that it clearly overcomes the lower limit of the confidence interval for the empirically predicted
threshold. However, normalized Br at the high field side remains at a value below 1%.
It is likely that the different amplitudes Br are mainly an effect of toroidicity. These sim-

ulations suggest, that these toroidal effects already play a significant role for an aspect ratio
of R0/a = 3.3 and will therefore be also relevant for ITER, which will have a similiar as-
pect ratio. De Vries explicitly mentions, that the derived scaling law lacks of a distinction
between HFS and LFS, which should be included in future work. Figure 3(a) in [85] shows
a comparison between the measured locked mode amplitudes and the predictions as given by
(5.3). The measured signals at COMPASS show derivations from the predicted amplitudes
of up to 230%. Moreover, also the measurements of COMPASS systematically show, that
B̂(rs,HFS) < B̂(rs,LFS)[53],[85, table 1]. This motivates the need for further calculations.

5.2.5 Coil signals during the partial thermal quench

(a) (b)

Figure 29: (a) Time traces of the locked mode signals from Mirnov coils at low field side
(rc = 57.2 cm) in the run with realistic vacuum vessel. (b) The locked mode signal
from the same coils at t = 35000 τA.

Virtual Mirnov coils similar to chapter 4 are placed on high and low field side at sixteen
different toroidal positions. The signals were integrated to yield the radial magnetic field at
the positions of the coils according to (2.45). The time traces (figure ??(a)) show both the
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growth of the mode and a slow rotation, which is mainly caused by an E-cross-B, velocity as
further analysis have shown. The signals at t = 35000 τ are given in figure ??(b). At this
time point, the (2/1) mode is in the non-linear phase an modes of higher toroidal numbers are
affecting the signal: although the n = 1 harmonic still dominates, significant deviations are
observable for π3/2 < φ < 2π. These are in accordance to the radial field on the midplane
given by figure 28. In contrast to chapter 4, this shows that coil signals can not always be
directly mapped to a resonant surface and some post-processing, like a Fourier transformation,
would be required to yield the amplitude of a mode.
The signal could be compared to (5.3). We leave this for further work, since our simulations

already show very different values of the perturbed radial magnetic field between high and low
field side rendering a more detailed comparison not useful at this time.
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6. Simulation of mode locking
This section treats the effects of rotation and its interaction with the resistive vacuum vessel,
namely the locking mechanism, acting onto a (2/1) mode. The equilibrium and physics model
used in Chapter 5 is used in this chapter as well, but E-cross-B background rotation and
diamagnetic drift effects are taken into account. An additional toroidal rotation is not taken
into account yet, which does not change the overall physics too strongly, such that this is
sufficient for a qualitative analysis of mode locking.
Like discussed in 2.4 it is known, that the momentum transfer varies with the rotation

frequency and it is supposed that it reaches a maximum if τwω ≈ m, where τw is the charac-
teristic resistive time of the vessel, ω the frequency at the resonant surface of the considered
mode, and m its mode number. In contrast, the transfer will vanish for both limits of the
ideal and non conducting wall. Hence, for an initial constant frequency and by varying the
wall resistivity, a value with maximum torque is expected, for which the decrease of plasma
rotation should be strongest. In the last section of this chapter, that specific resistivity will be
identified.
Besides, the occurrence of an island itself will reduce the rotation in a second way: the flat-

tening of the temperature profile around an island, that has been discussed in the last section,
leads to a modification of the pressure profile. The reduction of the pressure gradient entails a
decrease of the neoclassical E-cross-B and diamagnetic velocities at the resonant surface. This
effect is supposed to proceed on a much shorter timescale than the electromagnetic interaction
with the wall, i.e. between entering the non-linear phase and island saturation. It will be only
indirectly affected by the conducting wall, due to its influence on the mode growth rate.

6.1. Plasma and wall setup

f = ρw/ρw,0 τw/s
10−6 3.3 · 103

10−2 3.2 · 10−1

3 · 10−2 1.1 · 10−1

10−1 3.3 · 10−2

3 · 10−1 1 · 10−2

1 3.3 · 10−3

3 1.1 · 10−3

10 3.3 · 10−4

30 1.1 · 10−4

106 3.3 · 10−9

Table 1: ρw is given in units
of realistic ρw,0 =
2.6 · 10−6Ωm.

Simulations mainly rely on the setup already described in Sec-
tion 5.1. In addition, E-cross-B background rotation and dia-
magnetic terms of JOREK are now included. The ASDEX
Upgrade like vacuum vessel is considered only. To analyse the
influence of the wall resistivity on mode locking and to identify
the value of maximal torque, a parameters scan over ten values
of ρw respective twelve orders of magnitude is carried out. The
characteristic time is approximated based on τw = µ0/ρwbd/2,
with an average vessel radius of b ≈ 90 cm and the vessel thick-
ness of d = 15 mm. This approximation allows to restrict the
expected order of magnitude of the optimal resistivity. How-
ever, a more sophisticated prediction would require numerical
calculations that take the exact vessel geometry into account,
like implemented into the VALEN code[5].
The considered resistivities and regarding resistive times are

summarized in table 1. The runs with f = 10−6 or f = 106

again represent the ideal wall or no-wall limits, where f denotes
the scaling factor used for the resistivity in the scan.
Since the simulations focus on the investigation of the lock-
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ing of the (2/1) mode and its toroidicity induced sideband harmonics, only the first harmonic,
n = 1, is considered.

6.2. Analysis of the plasma

Figure 30: Evolution of the (2/1) island widths in the run with ideal wall and no-wall limit.
For a comparison, the respective runs without flows are also shown.

The destabilisation of the (2/1) mode behaves similarly like for the cases without flows:
The linear phase ends around t = 25000 τA, and different wall resistivities modify the growth
rate such that the island width at t = 25000 τA in the no-wall limit is only reached with a
delay of ∆t = 1000 τA in the ideal wall limit.
The diamagnetic frequency at the q = 2 surface is v∗e = −200 m/s (see figure 32) initially.

Assuming a poloidal circumference of the q = 2 surface of C ≈ 2πr = 2.9 m with minor
radius r = 0.46 m, this yields a diamagnetic frequency of 69 Hz. This relatively low frequency
reflects the fact that the considered plasma has a low temperature and low pressure gradient
around the q = 2 surface. The unchanged mode growth rates further confirm, that this low
frequency has no significant stabilizing effect on the mode for this equilibrium.
In this regime, it is well justified to study the locking mechanism between plasma and vacuum

vessel only: as discussed for DIII-D[52, fig. 10], the interaction with conducting structures inside
the vessel is dominant for high frequencies of 104 Hz. However, for frequencies of 102 Hz or
lower - which is the case here - the vacuum vessel dominates the locking.
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6.2.1 Mode locking

Figure 31: Poloidal velocity profile for ρw = ρ0 at the midplane on high field site at some time
points. The radial positions of the (4/1), (3/1) and (2/1) islands are marked with
vertical lines from left to right.

The following section describes the simulation with f = 1 in more detail, wherby the locking
behaves qualitatively the same for the other resistivities: the temporal evolution of the velocity
profile (see figure 31.) shows first influences through the occurrence of the (2/1) mode for
t = 25000 τA: The small perturbation of the velocity of 5% only around the resonant surface
(R = 1.25 m at HFS) can easily be identified as an effect of mode locking. After mode
saturation at t = 32000 τA, locking sets in at the side band harmonics (3/1) and (4/1), too.
The poloidal velocity reaches values close to zero at the resonant surfaces and due to frictional
forces acting between plasma at the resonant surface and the surroundings, the overall velocity
between ΨN = 0.6 and ΨN = 0.95 shrinks.
The first phase of velocity reduction is clearly dominated by the reduction of the diamagnetic

drift as introduced before (see figure 32). After mode saturation E-cross-B goes to zero and
even points in the opposite direction for a time of < 1000 τA. Then, it turns back in the original
direction and increases. These effects could be a results of Maxwell stress, like explained in
[44]. After that, locking mechanism sets in and the velocities decrease over a timescale of
∆t = 100000 τA.
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Figure 32: Time traces of the contributions to the poloidal velocity at the q=2-surface on the
high field side for ρw = ρ0. v⊥,e = v∗e + vE×B holds.

6.2.2 Influence of different wall resistivities

Figure 33: Poloidal velocity after entering the non-linear phase of the growth of the (2/1)
mode. The effect of different wall resistivities is indirect by modifying the growth
rate and thus time point of saturation.

Starting from the initial diamagnetic velocity v∗e = −200 m/s at the resonant surface,
the deceleration sets in at t ≈ 23000 τA in the run with the no-wall limit and the velocity
reduces to −150 m/s at t ≈ 25000 τA (see fig 33). Both time points are delayed by around
∆t = 1000 τA for the ideal wall limit. For increasing resistivity this delay reduces monotonously.
This behaviour matches quantitatively with the observations about mode growth: The delay
of ∆t = 1000 τA is reflected also in the different onset of the non-linear phase. Independently
of the growth rates, the (2/1) island saturates in each run at a width of > 4wc, implying a
distinct flattening of the kinetic profile. Hence, the pressure gradient decreases to < 5% of
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Figure 34: Development of the overall poloidal velocity in the later course. The locking sets
in and is strongest at a realistic resistivity of ∼ 10−1ρw,0.

the initial value for each run after t > 50000 τA, which makes the diamagnetic drift vanishing.
The no-wall and ideal-wall limits both show a similar behaviour in the latter course, where the

E-cross-B drift dominates: starting from v⊥,e ≈ −150 m/s, the velocity reduces to ≈ −50 m/s
after t = 20000 τA (see figure 34). Since momentum transfer onto the wall is vanishing for
these limits, it is assumed that only changes in the pressure gradient and friction forces within
the plasma lead to the reduction. All runs with resistivites between these two limits show a
clear braking due to the interaction with the conducting vessel.
The strongest locking can be identified at ρw ≈ 1 · 10−1ρ0: In that case, v⊥,e = −40 m/s

already at t = 50000 τA. At t = 35000 τA, when the E-cross-B drift reaches a maximum,
the entire velocity is about 140 m/s in this run, which corresponds to a poloidal rotation with
a frequency of ω = 50Hz at the resonant surface. This leads to τWω = 1.6. This value
is approximately equal to m as predicted, and torque acts with an amplitude close to the
maximum regarding (2.38). In comparison, the velocity decreases only to v⊥,e = −50 m/s
for a run with ρw = ρ0. In this case, where τWω is one order of magnitude smaller, the
deceleration has an amplitude of only 15% of the maximum value.
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7. Summary and Outlook
In this thesis, simulations of several aspects crucial for the understanding of the disruption
onset were carried out for the first time with the non-linear magnetohydrodynamics code
JOREK-STARWALL in realistic tokamak X-Point geometry.
The subject of the first part of this thesis was to generate virtual diagnostic coil signals for

the detection of tearing modes. For that purpose an ASDEX Upgrade like L-mode equilibrium
with a core electron temperature of 4 keV was considered and by the addition of an artificial
cooling source on the q = 2 surface, a (2/1) mode with a small amplitude was triggered.
Virtual Mirnov and Saddle coils for the measurement of the radial and poloidal components
of the perturbed field were implemented.
Toroidal periodicity of the coil signals corresponds well to the periodicity of the (2/1).

This means by using a sufficient number of Mirnov coils the mode and its phase shift can
be identified easily. It was also checked how well the radial decay of the amplitude can be
predicted. At positions where Br respective Bθ reaches their maxima, the decay matches well
with predictions for simple geometries.
Secondly, the evolution of a (2/1) neoclassical tearing mode into a partial thermal quench

was investigated in detail. A similar ASDEX Upgrade like equilibrium was considered again
and modified such that it is consistently unstable against the (2/1) mode. The evolution
of the plasma leads to a "partial" thermal quench, i.e. a stochastisation and cooling of
the outer plasma, which left the plasma core nearly unaffected. The detailed analysis of
important physicals mechanisms involved confirmed that the simulation met with theoretical
and experimental predictions or observations: After the initial occurrence of the (2/1) mode,
modes of higher poloidal respective toroidal number were coupled due to toroidicity effects
respectively quadratic coupling. It was shown, that the onset of stochastisation matches the
Chirikov criterion, i.e. were observed after island overlapping. The temperature profile became
significantly flattened in the island region with a critical island size regarding Fitzpatrick. That
flattening finally lead to the partial thermal quench. As experiments have shown, partial
thermal quenches are often occur during the precursor phase prior to a full thermal quench.
This enhances the relevance of this simulation for disruption modelling.
As third part of this thesis, the equilibrium was modified, so that it exhibits a slow poloidal

rotation below 100 Hz. The reason for such a weak rotation is given by a relatively flat pressure
gradient around the q = 2 surface. These slow rotation frequencies usually occur in the last
sequence of locking, where the interaction with the vacuum vessel becomes most relevant. The
vessel was considered in these simulations and a parameter scan of its resistivity respective
its characteristic wall time was performed. The dependency of locking on the resistivity was
clearly shown and the maximum decrease of rotation were observed at a value in agreement
with predictions. However, plasma rotation and locking need to be investigated in more detail
in further simulations. Rotation frequencies of up to 10 kHz are often observed in experiments.
They can be caused by momentum transfer from injected neutral beams but also from steep
pressure gradients, which are a main property of H-Mode plasmas. For such high frequencies,
mode growth is expected to be significantly decreased and the locking phase can proceed over
some hundreds of milliseconds.
The fact, that these simulations reproduce disruption processes well in a qualitative manner,

qualify them for further studies: using a more complex model implemented in JOREK, disrup-
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tion mitigation has already been shown.[56] These simulations started from "healthy" plasmas
exhibiting no instabilities. It is straightforward to apply this model to the equilibrium used
here. The effectiveness of mitigation depending on the time point from when it was started
during development of the (partial) TQ can than be investigated.
An extension of JOREK is currently under development, allowing to simulate the interaction

of run away electrons with the plasma.[3] Starting from an initial distribution of REs, its
evolution and back reaction onto the plasma can be studied. The effect of RE beams during
the (partial) thermal quench can be investigated within this setup. It is of interest for instance
how they further destabilize the tearing modes.
A full TQ simulation can be approached with a fully consistend current profile evolution.

This will allow for the destabilization of a (1/1) mode that leads to a full stochastisation. In
the long term, a simulation of the full sequence of a thermal quench towards a VDE would be
possible. Simulations of VDEs within JOREK were recently carried out[1].
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A. Coordinates

Figure 35: Major radius R0 and Coordinate R are measured from the torus axis. a: minor
radius. HFS: High field side. LFS: low field side.

An important definition is the normalized flux ΨN with Ψsep and Ψaxis measured at the
seperatrix respective magnetic axis:

ΨN = Ψ−Ψaxis

Ψsep −Ψaxis
(A.1)
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